Categorical Variables

1405 Instructor: Ruiging (Sam) Cao



Categorical vs. Numeric Variables

* Categorical variables represent distinct categories or groups
 Examples: IPO status, gender, country of residence

* Arithmetic and comparison operators do not make sense on values of a
categorical variable (e.g., brown+blue is undefined, and so is brown>blue)

* Summary statistics like mean, sum, and standard deviation do not make
sense on values of a categorical variable

* A binary variable are an important special case of categorical
variables, which has exactly two categories often represented by
True (1) and False (0)

> also called a dummy, dummy variable, zero-one variable, or
Indicator variable



Relabel Values of a Categorical Column

_ DataFrame.col.map(dict)

Arguments dict: adictionary mapping the original values to the new values

Returns a Pandas Series with the original values replaced by new values




Relabel Values of a Categorical Column

* The column month has 12 unique values{'01"', '02",..., '12"}

Tomap '01'>"jan','02'>"feb’,... and store the result in new
variable month_char, we can call Series.map({old:new})

pivoted[ 'month_char'] = pivoted[ 'month'].map(month_dict)

month month_char
02 feb

11 nov

02 feb

04 apr

05 may

06 jun




Discretize Numerical Data: Bins

pd.cut(Ser'ies, bins, labels)

Arguments Series:the column (variable)to be binned
bins: the list indicating thresholds of the custom-defined bins
labels: labels associated with each bin in the output Series

Returns a Pandas Series with values from labels that indicate which bins the
values in the original Series are in




Discretize Numerical Data: Bins

* Define bins=[0,10,300,606] as cutoffs for discretizing counto

* pd.cut() maps count® values between the 0t & 15t cutoffs >
"Low", between the 15t & 2"d cutoffs = "Medium", and between the
2nd & 3" cutoffs » "High"

pd.cut(pivoted.count®, bins=bins, labels=["Low", "Medium", "High"]

countO countBucket
1 Low
2 Low
1 Low
2 Low
4 Low




Discretize Numerical Data: Quantiles

pd.qcut(Ser'ies, q, labels)

Arguments Series:the column (variable) for which the quartiles are calculated
d: an integer indicating the quartile
labels: labels associated with each quartile in the output Series
Returns a Pandas Series with values from labels that indicate which quartile
the values in the original Series are in




Discretize Numerical Data: Quantiles

* Quartiles (g=4) splits values of count@ into four equal groups

* pd.gcut () maps count@ values into the four quartiles, with the
label of each quartile givenby [1,2,3,4]

pd.qcut(pivoted.counto@, q=4, labels=[1,2,3,4])

countO quartile

398
355
430

558
1

= A B O W W W




Generate Indicators from a Column

_ pd.get_dummies(Series, prefix)

Arguments Series: The column (variable) containing categorical values used to

Returns

generate the indicator variables in the output DataFrame

prefix: The prefix to be added to the names of the generated
indicator variables

A DataFrame containing indicator variables, where each variable is
set to True if the value in the original Series matches the name of the
indicator variable (excluding the prefix) and setto False otherwise




Generate Indicators from a Column

pd.get dummies(pivoted['countBucket'], prefix='bucket')

countBucket — bucket_Low | bucket Medium |bucket_High \
Low 0 True False False
Low 1 True False False
Low 2 True False False
Low 3 True False False
Low 4 True False False
High 76 False False True
High 77 False False True
High 78 False False True
High 79 False False True
Low 80 True False False




Exercise: Categorical Variables

Run the provided code and obtain the DataFrame pivoted
1. Convert month from string format (e.g., '01', '"12') to integer format (e.g., 1, 12)
2. Create a histogram to visualize the distribution of the month column

3. Add anew column named quarter using pd.cut(): quarter = 1 for months
January, February, March (1, 2, 3); quarter = 2 for months April, May, June (4,
5, 6); quarter = 3 for months July, August, September (7, 8, 9); quarter = 4 for
months October, November, December (10, 11, 12).

4. Convertyear to integer. Add a new column named period using pd.qcut():
period = 'pre' for years below median; period = 'post’ for years above median

5. (Prepare data for merging.) Create a new data table with two columns, year
and month, containing all possible year-month combinations from February
2011 to August 2018. Ensure that the table includes every combination
exactly once, with no duplicate rows.



