
12/27/25 1

Reshaping Data
1405 Instructor: Ruiqing (Sam) Cao

Reshaping Data (Pivot & Melt)

Melt (Wide to Long)

Date Type Sales
2023Q1 A 100
2023Q2 A 200
2023Q1 B 150
2023Q2 B 250
2023Q1 C 125
2023Q2 C 225

Date Sales
A B C

2023Q1 100 150 125
2023Q2 200 250 225

Pivot (Long to Wide)

Pivot (Long to Wide)

Date Type Sales
2023Q1 A 100
2023Q2 A 200
2023Q1 B 150
2023Q2 B 250
2023Q1 C 125
2023Q2 C 225

Date Sales
A B C

2023Q1 100 150 125
2023Q2 200 250 225

Pivot (Long to Wide)

index=Date columns=Type values=Sales

df= df.pivot(index, columns, values)=

Melt (Wide to Long)

Date Type Sales
2023Q1 A 100
2023Q2 A 200
2023Q1 B 150
2023Q2 B 250
2023Q1 C 125
2023Q2 C 225

Date A B C
2023Q1 100 150 125
2023Q2 200 250 225

Melt (Wide to Long)

id_vars=Date value_name=Sales
var_name=Type value_vars=[A,B,C]

df= df.melt(id_vars,value_name,var_name,value_vars)=

Pivot & Melt: Summary of Parameters

pivot
(input)

pivot
 (output)

melt
 (input)

melt
(output) Example

index id_vars ['Date']
columns var_name ['Type']

value_vars ['A','B','C']
values value_name Sales

• Parameters for pivot (index, columns, values) and
melt (id_vars, value_name, var_name, value_vars)

Pivot (Long to Wide): Arguments

• Basic syntax: DataFrame.pivot(index,columns,values)
• index: primary key of the pivoted table
• columns: column(s) to pivot on, whose unique values will be new column

names in the pivoted table
• values: column(s) whose values populate the cells of the pivoted table

Ø index, columns, and values can be either a single column
(one variable) or multiple columns (a list of variables)

Pivot (Long to Wide): an Example
data.pivot(index=['year','month'],columns=['is_group'],values='count')

Melt (Wide to Long): Arguments
• DataFrame.melt(id_vars,value_name,var_name,value_vars)

• id_vars: primary key of the original table
• value_name: the name of the value column in the melted table (defaults to

'value' if not specified)
• var_name: name of the column to store category labels (i.e., column names

given in value_vars) in the melted table (defaults to 'variable’ if not specified)
• value_vars: columns to melt in the original table, which become category

labels stored in var_name in the melted table

Øvalue_name & var_name must be atomic, value_vars must be a list,
and id_vars can be either atomic or a list

Øvalue_vars are the unique values of var_name in the melted table

Melt (Wide to Long): an Example
pivoted.melt(id_vars=['year','month'],value_name='count',var_name='grp_yn',value_vars=[False,True])

Exercise: Pivoting & Melting Data
Run the provided code and obtain the DataFrames data and pivoted
1. Pivot data using (year, is_group) as the primary key, month as the column to

pivot on, and cnt as the values. Reset index to default. Examine columns.
Then melt the table back to its original form

2. Pivot data using year as the primary key, (month, is_group) as the columns
to pivot on, and cnt as the values. Reset index to default. Examine columns.
Then melt the table back to its original from [warning: this one is hard]

3. More data cleaning (on pivoted)
1) Clean the variable True in the DataFrame pivoted, by replacing the missing values (NaN)

with 0 and casting non-missing values to integers. Store the result in a new column
True_cleaned (hint: use lambda function)

2) Check that True and True_cleaned indeed contain the same information. Then delete True
from pivoted_data

3) Cast the column False in the DataFrame pivoted to int type, and store the casted values
in a new variable named False_cleaned. Drop the column False from pivoted

4) Rename the column True_cleaned to count1 and False_cleaned to count0 in pivoted

