Aggregating Data

1405 Instructor: Ruiging (Sam) Cao

Aggregate Data to a Coarser Level

* First, choose the primary key for the aggregated data. This key will
uniquely identify each group in the aggregated dataset

Data aggregation involves two operations

* Group By: Group the data based on the new primary key. Each
group will consist of observations that share the same primary key

» Aggregate: Apply an aggregation function (e.g., sum(), mean(),
or count()) to each group. The result is a single row per group
with the aggregated values

> Aggregated dataset where each group corresponds to a unique
primary key and its aggregated values

Group By and Aggregate

Combine

15

30

45

McKinney, Figure 10.1: lllustration of a group aggregation

Group By and Aggregate

_ DataFrame.groupby(keys).agg func(data)

Arguments keys: a list of one or more column names indicating
the primary keys of the aggregated data
data: sometimes N/A which means aggregation is
applied to all columns; otherwise, one or more column
names on which agg func() is applied

agg func The aggregation function e.g., mean(), sum(), size(),
count(),min(), max(), std(), var(), quantile()

Returns a DataFrame object indexed by keys and with exactly
one row per value of the keys

Commonly Used Aggregation Functions

* count(): cannot take in any argument, returns the number of
non-missing values for ALL columns (except for the key) in each
group (relatedly nunique() counts unique non-missing values)

« size(): cannot take in any argument, returns the total number of
observations in each group (regardless of missing values)

* mean(), sum(),min(), max(), std(), var(): takes no argument,
returns aggregated values in each group for all numeric column(s)

Group By and Aggregate: an Example

C ountt h e hum b er Of first_name is_group id date_joined joined2018 year month day
users J oinin g Ve nmo 0 Sion False 2082497001160704615 2016-11-13T07:09:48 False 2016 11 13
fO r eac h uni q ue (ye a r, 1 Kari False 2538731244355584742 2018-08-04T18:45:48 True 2018 08 04
; 2 Jessie False 1921315569139712500 2016-04-04T21:51:04 False 2016 04 04
month, is_group)
3 Dion False 2019594260709376161 2016-08-18T12:13:17 False 2016 08 18
H . 4 Alec False 2080895330680832565 2016-11-11T02:07:34 False 2016 11 11
Solve the task using:
* size()
19995 Matthew False 1774670361657344464 2015-09-15T13:53:13 False 2015 09 15
e count()
e Sum () 19996 Matt False 1080572944318464679 2013-01-30T21:45:33 False 2013 01 30
. 19997 Jerson False 1874983190003712396 2016-01-31T23:36:54 False 2016 01 31
as the aggregation
. 19998 Xinrong False 2046581142454272653 2016-09-24T17:51:24 False 2016 09 24
function
19999 Paul False 1333574510837760138 2014-01-14T23:34:30 False 2014 01 14
19992 rows x 8 columns

regate: an Example
The row indexes of the aggregated
Use size(): DataFrame is its primary key

pd.DataFrame(data.groupby(['year', "'month’,
'is group']).size(),columns=["'cnt’'])

Group By and Ag

cnt

Use count():

data.groupby(['year', 'month', 'is group'])
[['id']].count().rename(columns={"'id':"'cnt’'})

O S S =Y

2018 05 False 393

Use sum(): o rame a0
data['cnt’'] = 1 07 False 558
data.groupby(['year', 'month’, 'is group'])[[08 False 1
‘cnt']].sum()

96 rows x 1 columns

Multiple Aggregation Functions at Once

If you want to calculate the sum of some variables and the average of
others, using only one aggregation function at a time and then
concatenating the results can be very cumbersome

You can use DataFrame.groupby().agg(dict) to perform different
types of aggregation at once

* The argument dict is a dictionary mapping each column to one or
a list of functions (literals such as 'sum') to apply to that column

You can chain it with .rename() or .set_axis() to fix the column
names

Flatten Index After Data Aggregation

_ DataFrame.reset _index()

Arguments N/A

Returns a new DataFrame with default index, and the index of
the original DataFrame become separate columns

* The method can also be performed inplace, for example:

data.reset_index(inplace=True)

Modifies data directly by resetting its index to default and turning the
original index to separate columns

Flatten Index After Data Aggregation

ear month is_group tount
count
2011 02 False 1 1| 2011 11 False 1
1 False 1 . . 2 |2012 01 False 1
o ral 1ldata.reset_index(inplace=True) N
02 False 2 4 | 2012 04 False 1
04 False 1
91 | 2018 05 False 393
393
y 92 | 2018 05 True 1
430 93 | 2018 06 False 430
558 94 | 2018 07 False 558
1 95 | 2018 08 False 1
96 7oV New index
owdin .e)r(ows x 1 columns e de 96 rows x 4 columns

Exercise: Data Aggregation

(Previous Exercise) Load assignment1_venmo_dataset_jul2018.csvinto a
Pandas DataFrame. Create a transactions table that satisfies 1NF and
includes only columns you consider important

Aggregate the transactions table at the level of (year, month, day)
to include the following metrics:

1. Total number of transactions each day

Number of “Charge” transactions

Number of “Pay” transactions

Number of unique users initiating a “Pay” transaction
Number of unique users initiating a “Charge” transaction
Average number of transactions initiated per user

S I

