
12/27/25 1

Aggregating Data
1405 Instructor: Ruiqing (Sam) Cao

Aggregate Data to a Coarser Level

• First, choose the primary key for the aggregated data. This key will
uniquely identify each group in the aggregated dataset

Data aggregation involves two operations
• Group By: Group the data based on the new primary key. Each

group will consist of observations that share the same primary key
• Aggregate: Apply an aggregation function (e.g., sum(), mean(),

or count()) to each group. The result is a single row per group
with the aggregated values

→ Aggregated dataset where each group corresponds to a unique
primary key and its aggregated values

Group By and Aggregate

McKinney, Figure 10.1: Illustration of a group aggregation

Group By

Aggregate

Group By and Aggregate

DataFrame.groupby(keys).agg_func(data)
Arguments keys: a list of one or more column names indicating

the primary keys of the aggregated data
data: sometimes N/A which means aggregation is
applied to all columns; otherwise, one or more column
names on which agg_func() is applied

agg_func The aggregation function e.g., mean(), sum(), size(),
count(), min(), max(), std(), var(), quantile()

Returns a DataFrame object indexed by keys and with exactly
one row per value of the keys

Commonly Used Aggregation Functions

• count(): cannot take in any argument, returns the number of
non-missing values for ALL columns (except for the key) in each
group (relatedly nunique() counts unique non-missing values)

• size(): cannot take in any argument, returns the total number of
observations in each group (regardless of missing values)

• mean(), sum(), min(), max(), std(), var(): takes no argument,
returns aggregated values in each group for all numeric column(s)

Group By and Aggregate: an Example
Count the number of
users joining Venmo
for each unique (year,
month, is_group)

Solve the task using:
• size()
• count()
• sum()
as the aggregation
function

Group By and Aggregate: an Example

pd.DataFrame(data.groupby(['year','month',
'is_group']).size(),columns=['cnt'])

Use size():

Use count():
data.groupby(['year','month','is_group'])
[['id']].count().rename(columns={'id':'cnt'})

Use sum():
data['cnt'] = 1
data.groupby(['year','month','is_group'])[[
'cnt']].sum()

The row indexes of the aggregated
DataFrame is its primary key

Multiple Aggregation Functions at Once

If you want to calculate the sum of some variables and the average of
others, using only one aggregation function at a time and then
concatenating the results can be very cumbersome

You can use DataFrame.groupby().agg(dict) to perform different
types of aggregation at once
• The argument dict is a dictionary mapping each column to one or

a list of functions (literals such as 'sum') to apply to that column

You can chain it with .rename() or .set_axis() to fix the column
names

Flatten Index After Data Aggregation

DataFrame.reset_index()
Arguments N/A
Returns a new DataFrame with default index, and the index of

the original DataFrame become separate columns

• The method can also be performed inplace, for example:

data.reset_index(inplace=True)
Modifies data directly by resetting its index to default and turning the
original index to separate columns

Flatten Index After Data Aggregation

data.reset_index(inplace=True)

New index
Old index

Exercise: Data Aggregation
(Previous Exercise) Load assignment1_venmo_dataset_jul2018.csv into a
Pandas DataFrame. Create a transactions table that satisfies 1NF and
includes only columns you consider important
Aggregate the transactions table at the level of (year, month, day)
to include the following metrics:
1. Total number of transactions each day
2. Number of “Charge” transactions
3. Number of “Pay” transactions
4. Number of unique users initiating a “Pay” transaction
5. Number of unique users initiating a “Charge” transaction
6. Average number of transactions initiated per user

