Cleaning Data

1405 Instructor: Ruiging (Sam) Cao

Review: Data Sources & Data Cleaning

* Common data sources
 Tabular Data (e.g., *.csv, *.dta) read directly from your local disk
 Data from APIs or web sources, often in formats like JSON or HTML.
 Data from SQL databases or large-scale cloud-based storage systems.
* Data created by your programs, e.g., through string parsing or scraping

> Raw data is often unstructured or incomplete, requiring substantial
cleaning before use. Even relatively clean data must be filtered and
transformed at the right level for meaningful analysis.

> |n reality, a large portion of time is spent ensuring data integrity and
quality, often more than performing analytics or machine learning tasks.

Motivating Task

* Below is a user registration dataset from a FinTech payment company

* We want to obtain the
number of user sign-ups
every month 2011-2019

This requires us to

* Clean the data and
ensure every id is linked
to one user only

* Aggregate the data at
the appropriate level

first_name
Sion

Kari

Jessie

Dion

Alec

Matthew
Matt
Jerson
Xinrong

Paul

is_group
False
False
False
False

False

False
False
False
False

False

primary key

id
2082497001160704615
2538731244355584742
1921315569139712500
2019594260709376161
2080895330680832565

1774670361657344464
1080572944318464679
1874983190003712396
2046581142454272653
1333574510837760138

date_joined
2016-11-13T07:09:48.000Z
2018-08-04T718:45:48.000Z
2016-04-04T21:51:04.000Z
2016-08-18T12:13:17.000Z
2016-11-11T02:07:34.000Z

2015-09-15T13:53:13
2013-01-30T21:45:33
2016-01-31T23:36:54
2016-09-24T17:51:24
2014-01-14T723:34:30

Data Cleaning Process (General)

* Make a decision about what columns are chosen as primary key

* Modify, create and remove columns based on current data to
achieve these goals:
* Data homogenization: each column contains same type of data
* Create variables that are wanted for analysis
* Remove redundant columns not wanted for analysis

* Deal with missing values and duplicate data to satisfy 1NF (or go
higher if needed)

* Sort the data in some order that helps make sense of the data
(e.g., by the primary key)

Commonly Used String Methods

* Fetch a substring DataFr'ame.col.str'

* Substring membership DEVEIFEE el str

DataFrame.col.str)split(s)

* Split a string into parts

* Other common methods (e.g., findall, replace, strip)

String Methods: Fetch a Substring
DataFr'ame.col.str'[b:e]

Parameters b: starting position (can be omitted if 0), e: one plus
the ending position (can be omitted if end of string)

Returns a Pandas Series object containing the substrings

data= data.date joined.str[:19]

first_ name is_group id date_joined m

2016-11-13T07:09:48
2018-08-04T18:45:48
2016-04-04721:51:04
2016-08-18T12:13:17
2016-11-11T702:07:34

0 Sion False 2082497001160704615J 2016-11-13T07:09:48.000Z

1 Kari False 2538731244355584742) 2018-08-04T18:45:48.000Z

Jessie False 1921315569139712500 § 2016-04-04T21:51:04.000Z

AP WNEFRES

2
3 Dion False 2019594260709376161] 2016-08-18T12:13:17.000Z
4

Alec False 2080895330680832565 J 2016-11-11T02:07:34.000Z

String Methods: Substring Membership
_ DataFrame.col.str.contains(s)

Arguments s: substring to be recognized in the values of the
column DataFrame.col

Returns a Pandas Series object containing Boolean values
data= data.date_joined.str.contains('2018')
first_name is_group id date_joined
0 Sion False 2082497001160704615 § 2016-11-13T07:09:48
1 Kari False 2538731244355584742) 2018-08-04T18:45:48) Fa 1 se
2 Jessie False 1921315569139712500 § 2016-04-04T21:51:04 1 True
_ 2 False
3 Dion False 2019594260709376161 § 2016-08-18T12:13:17 3 Fa -L se
4 Alec False 2080895330680832565) 2016-11-11T02:07:34 4 False

String methods: Split a String Into Parts

_ DataFrame.col.str.split(s)

Arguments s: character or (short) string that splits
DataFrame.col into a list of substrings

Returns a Pandas Series object containing lists of substrings
data= >>> data.date_joined.str[:10].str.split @)
first_name is_group id date_joined
0 Sion False 2082497001160704615 |2016-11-13T07:09:48
1 Kari False 2538731244355584742 |2018-08-04T18:45:48 0 [2016, 11, 13]
2 Jessie False 1921315569139712500 |2016-04-04r21:51:04 1 (2018, 08, 04]
. 2 [2016, 04, 04]
3 Dion False 2019594260709376161 |2016-08-1812:13:17 3 [2016, 08, 18]
4 Alec False 2080895330680832565 |2016-11-11|T02:07:34 4 [2016, 11, 11]

Other Common String Methods

Pattern matching: DataFrame.col.str.findall(pattern).str[0]

* Match the regular expression using pattern for all values of
DataFrame.col, and return the first match

Replace substring: DataFrame.col.str.replace(old, new)
* Replace any values equal to old by the value new

Left trimming: DataFrame.col.str.lstrip()
* Remove any blank spaces (' ') in the beginning

Right trimming: DataFrame.col.str.rstrip()
* Remove any blank spaces (' ') at the end

Trimming (both sides): DataFrame.col.str.strip()
* Remove any trailing blank spaces (' ') on both sides

Two Ways to Append a New Column

Suppose we want to add a new column to the DataFrame data
with values newcol and name 'v'. There are two way:

data['v'] = newcol OR

data = pd.concat([data, newcol.rename('v')], axis=1)

* They are basically equivalent, but the second approach is more
general: it also works for a DataFrame with more than 1 column

* For example:

data = pd.concat([data, newdata], axis=1)

Add New Columns to a DataFrame

If this were @, we’d be

[] 1 . '
_ pd .concat (Datanames, axi @ adding new rows instead!

Arguments DataFrames: a list of DataFrames with the same
number of observations (and non-overlapping column
names) to be concatenated
axis: mustbelor 'columns’ in this application

Returns a Pandas DataFrame that combines all the data in the
list DataFrames, by stacking them together as columns.

Add New Columns to a DataFrame

data['joined2018'] = data.date_joined.str.contains('2018"')

data= pd.concat([data,data.date_joined.str[:10].str.split(’-
"Y.rename('ymd_list')],axis=1)

~—

first_name is_group id date_joined | joined2018 ymd_list
0 Sion False 2082497001160704615 2016-11-13T07:09:48 False ||[2016, 11, 13]
1 Kari False 2538731244355584742 2018-08-04T18:45:48 True ||[2018, 08, 04]

Jessie False 1921315569139712500 2016-04-04T721:51:04 False ||[2016, 04, 04]

2
3 Dion False 2019594260709376161 2016-08-18T12:13:17 False ||[2016, 08, 18]
4

Alec False 2080895330680832565 2016-11-11T02:07:34 Ealse

Apply Any Function to a Column

f can be a built-in Python function
_ DataFrame.col.apply(f)

Arguments f: afunction (built-in, external, or a lambda function)

Returns a Pandas Series object resulting from applying
element-wise to values in DataFrame.col

data.date_joined.apply(int)

mmmm) Casts all values in the column date joined to integers, e.g.,
1.00 becomes 1

Apply Any Function to a Column

f can be a user-defined function
_ DataFrame.col.apply(f)

Arguments f: afunction (built-in, external, or a lambda function)

Returns a Pandas Series object resulting from applying
element-wise to values in DataFrame.col

def f(date): mmm) Applies a user-defined function £

data.date joined.apply(f) on the column date_joined

Apply Any Function to a Column

f can be a lambda function
_ DataFrame.col.apply(f)

Arguments f: afunction (built-in, external, or a lambda function)

Returns a Pandas Series object resulting from applying
element-wise to values in DataFrame.col

data.date_joined.apply(lambda x: x if type(x)==1list else [])

mmm) Keep the value unchanged ifits type is a 1ist, and turn
everything else into an empty string [|

Handle Missing Values & Duplicate Data

* Decide and identify the primary keys for each DataFrame. The
primary keys must be non-missing, and they must be unique
identifiers of observations in the data.

* Data cleaning usually requires:
= Removing all the observations with missing primary keys

=» Keeping exactly one observation for each primary key

Count Frequencies of the Primary Key

_ DataFrame.value counts(dropna)

Arguments dropna: must be setto False, because the defaultis
True and we need to see the missing values

Returns a Pandas Series object with all distinct values of
DataFrame.col as index and their frequency as value

 value counts() automatically sorts the unique values by their counts
in descending order, so any values>1 appear at the top

For example,
data[['id']].value counts(dropna=False)

Count Frequencies of the Primary Key

data[['id']].value counts(dropna=False)

1759830821830656677 Clearly,/there are duplicate observations

2017628776300544678 — : “ 1r
1934351583412224902 for some values of the primary key “id

2104942223425536361
1919028113178624252

993516800966656551 1
095759839248384204 1
995840587988992372 1
944508137111552009 1
NaN 1
Name: count, Length: 19993, dtype: int64

Drop Rows with Missing Primary Key
_______ DataFrame.dropna(subset)

Arguments subset: alist of one or more column names

Returns a DataFrame object that drops observations with
missing value in at least one variable among subset
and keeps all other observations

* The method can also be performed inplace

For example,
data.dropna(subset=['id'],inplace=True)
Modifies data directly by dropping observations with missing 'id" values

Drop Rows with Missing Primary Key

first_name is_group id date_joined

0 Sion False 2082497001160704615 2016-11-13T07:09:48

1 Kari False 2538731244355584742 2018-08-04T18:45:48

2 Jessie False 1921315569139712500 2016-04-04T21:51:04

3 Dion False 2019594260709376161 2016-08-18T12:13:17

4 Alec False 2080895330680832565 2016-11-11T02:07:34
19995 Matthew False 1774670361657344464 2015-09-15T13:53:13
19996 Matt False 1080572944318464679 2013-01-30T21:45:33
19997 Jerson False 1874983190003712396 2016-01-31T23:36:54
19998 Xinrong False 2046581142454272653 2016-09-24T17:51:24
19999 Paul False 1333574510837760138 2014-01-14T23:34:30

(20000 r)ws x 8 columns

data.dropna(subset=['id'],inplace=True)

————>

The one observation with missing
"id' is dropped from the data

19999 I';NS x 8 columns

first_name is_group id date_joined

0 Sion False 2082497001160704615 2016-11-13T07:09:48

1 Kari False 2538731244355584742 2018-08-04T18:45:48

2 Jessie False 1921315569139712500 2016-04-04T21:51:04

3 Dion False 2019594260709376161 2016-08-18T12:13:17

4 Alec False 2080895330680832565 2016-11-11T02:07:34
19995 Matthew False 1774670361657344464 2015-09-15T13:53:13
19996 Matt False 1080572944318464679 2013-01-30T21:45:33
19997 Jerson False 1874983190003712396 2016-01-31T23:36:54
19998 Xinrong False 2046581142454272653 2016-09-24T17:51:24
19999 Paul False 1333574510837760138 2014-01-14T23:34:30

S

Drop Duplicates by Primary Key

_ DataFrame.drop_duplicates(subset,keep)

Arguments subset: alist of one or more column names
keep: 'first' (default), 'last’, False

Returns a DataFrame object that keeps exactly one observation
for each unique value of subset

* The method can also be performed inplace. For example,
data.drop_duplicates(subset=['id'],keep="first',inplace=True)
Only the first occurrence (keep="first ") of each unique value of 'id" is
kept, and data is directly modified

Drop Duplicates by Primary Key

first_name is_group id date_joined

0 Sion False 2082497001160704615 2016-11-13T07:09:48

1 Kari False 2538731244355584742 2018-08-04T18:45:48

2 Jessie False 1921315569139712500 2016-04-04T21:51:04

3 Dion False 2019594260709376161 2016-08-18T12:13:17

4 Alec False 2080895330680832565 2016-11-11T02:07:34
19995 Matthew False 1774670361657344464 2015-09-15T13:53:13
19996 Matt False 1080572944318464679 2013-01-30T21:45:33
19997 Jerson False 1874983190003712396 2016-01-31723:36:54
19998 Xinrong False 2046581142454272653 2016-09-24T17:51:24
19999 Paul False 1333574510837760138 2014-01-14T23:34:30

(19999 r>ws x 8 columns

data.drop_duplicates(subset=['id'],
keep="first', inplace=True)

————>

6 observations were removed, and the
updated data now has unique 'id" values

C

first_name is_group id date_joined

0 Sion False 2082497001160704615 2016-11-13T07:09:48

1 Kari False 2538731244355584742 2018-08-04T18:45:48

2 Jessie False 1921315569139712500 2016-04-04T21:51:04

3 Dion False 2019594260709376161 2016-08-18T12:13:17

4 Alec False 2080895330680832565 2016-11-11T02:07:34
19995 Matthew False 1774670361657344464 2015-09-15T13:53:13
19996 Matt False 1080572944318464679 2013-01-30T21:45:33
19997 Jerson False 1874983190003712396 2016-01-31T23:36:54
19998 Xinrong False 2046581142454272653 2016-09-24T17:51:24
19999 Paul False 1333574510837760138 2014-01-14T23:34:30

19993 raNs x 4 columns

Tips on Data Cleaning

* As a first step, very important to choose a primary key: drop
missing values and duplicate rows relative to the primary key

* Be careful with different missing value types
* NaN (np.isnhan): missing value for numeric types

* None: a generic data object (e.g., string, but not numeric)

e Empty string (' ' or ""): sometimes treated as the missing
value for string variables

Tips on Data Cleaning

e Make sure to harmonize data formats

»E.g., "fifteen", 15, "0015", and 15.00 are different ways to express the
same number 15, so they should all become 15 with int as the data type

* Remove redundant columns (in principle 3NF, but not strictly)
»E.g., delete intermediate columns created to clean or process data

* Sort the rows in some order that is useful for data analysis
»E.g., often in ascending order of the primary key, but not always

Exercise: Data Cleaning (Advanced)

Work on part of Assignment 1, Problem 2(f): “Write Python code to
execute your relational model database re-design and produce the
data tables corresponding to your proposed design.”

1. Read the CSV file assighment1_venmo_dataset_jul2018.csv
Into a Pandas DataFrame

2. Define the primary key to uniquely identify each transaction

3. Design and create a transactions table that satisfies the Third
Normal Form (3NF): each column has atomic values (1NF), and
no partial or transitive dependencies (2NF and 3NF).

