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Cleaning Data
1405  Instructor: Ruiqing (Sam) Cao



Review: Data Sources & Data Cleaning

• Common data sources
• Tabular Data (e.g., *.csv, *.dta) read directly from your local disk
• Data from APIs or web sources, often in formats like JSON or HTML.
• Data from SQL databases or large-scale cloud-based storage systems.
• Data created by your programs, e.g., through string parsing or scraping

→ Raw data is often unstructured or incomplete, requiring substantial 
cleaning before use. Even relatively clean data must be filtered and 
transformed at the right level for meaningful analysis.
→ In reality, a large portion of time is spent ensuring data integrity and 
quality, often more than performing analytics or machine learning tasks.



Motivating Task

• We want to obtain the 
number of user sign-ups 
every month 2011–2019

This requires us to
• Clean the data and 

ensure every id is linked 
to one user only
• Aggregate the data at 

the appropriate level

• Below is a user registration dataset from a FinTech payment company
primary key



Data Cleaning Process (General)

• Make a decision about what columns are chosen as primary key
• Modify, create and remove columns based on current data to 

achieve these goals:
• Data homogenization: each column contains same type of data
• Create variables that are wanted for analysis
• Remove redundant columns not wanted for analysis

• Deal with missing values and duplicate data to satisfy 1NF (or go 
higher if needed)
• Sort the data in some order that helps make sense of the data 

(e.g., by the primary key)



Commonly Used String Methods

• Fetch a substring

• Substring membership

• Split a string into parts

• Other common methods (e.g., findall, replace, strip)

DataFrame.col.str[b:e]

DataFrame.col.str.contains(s)

DataFrame.col.str.split(s)



String Methods: Fetch a Substring

data.date_joined.str[:19]

DataFrame.col.str[b:e]
Parameters b: starting position (can be omitted if 0), e: one plus 

the ending position (can be omitted if end of string)
Returns a Pandas Series object containing the substrings

data=

output



String Methods: Substring Membership

data.date_joined.str.contains('2018')

DataFrame.col.str.contains(s)
Arguments s: substring to be recognized in the values of the 

column DataFrame.col
Returns a Pandas Series object containing Boolean values

data=

output



String methods: Split a String Into Parts

DataFrame.col.str.split(s)
Arguments s: character or (short) string that splits 

DataFrame.col into a list of substrings
Returns a Pandas Series object containing lists of substrings

>>> data.date_joined.str[:10].str.split('-')data=

output



Other Common String Methods 
Pattern matching: DataFrame.col.str.findall(pattern).str[0]
• Match the regular expression using pattern for all values of 

DataFrame.col, and return the first match
Replace substring: DataFrame.col.str.replace(old,new)
• Replace any values equal to old by the value new
Left trimming: DataFrame.col.str.lstrip()
• Remove any blank spaces (' ') in the beginning
Right trimming: DataFrame.col.str.rstrip()
• Remove any blank spaces (' ') at the end
Trimming (both sides): DataFrame.col.str.strip()
• Remove any trailing blank spaces (' ') on both sides



Two Ways to Append a New Column

• They are basically equivalent, but the second approach is more 
general: it also works for a DataFrame with more than 1 column
• For example:

data['v'] = newcol

data = pd.concat([data, newcol.rename('v')], axis=1)

OR

data = pd.concat([data, newdata], axis=1)

Suppose we want to add a new column to the DataFrame data 
with values newcol and name 'v'. There are two way:



Add New Columns to a DataFrame

pd.concat(DataFrames,axis=1)
Arguments DataFrames: a list of DataFrames with the same 

number of observations (and non-overlapping column 
names) to be concatenated
axis: must be 1 or 'columns' in this application

Returns a Pandas DataFrame that combines all the data in the 
list DataFrames, by stacking them together as columns.

If this were 0, we’d be 
adding new rows instead!



Add New Columns to a DataFrame

data['joined2018'] = data.date_joined.str.contains('2018')
data= pd.concat([data,data.date_joined.str[:10].str.split('-
').rename('ymd_list')],axis=1)

data



Apply Any Function to a Column

DataFrame.col.apply(f)
Arguments f: a function (built-in, external, or a lambda function)
Returns a Pandas Series object resulting from applying f 

element-wise to values in DataFrame.col

data.date_joined.apply(int)
Casts all values in the column date_joined to integers, e.g., 
1.00 becomes 1

f can be a built-in Python function



def f(date):
    ...
data.date_joined.apply(f)

Apply Any Function to a Column

DataFrame.col.apply(f)
Arguments f: a function (built-in, external, or a lambda function)
Returns a Pandas Series object resulting from applying f 

element-wise to values in DataFrame.col

Applies a user-defined function f 
on the column date_joined

f can be a user-defined function



data.date_joined.apply(lambda x: x if type(x)==list else [])

Apply Any Function to a Column

DataFrame.col.apply(f)
Arguments f: a function (built-in, external, or a lambda function)
Returns a Pandas Series object resulting from applying f 

element-wise to values in DataFrame.col

Keep the value unchanged if its type is a list, and turn 
everything else into an empty string []

f can be a lambda function



Handle Missing Values & Duplicate Data

• Decide and identify the primary keys for each DataFrame. The 
primary keys must be non-missing, and they must be unique 
identifiers of observations in the data.

• Data cleaning usually requires:
èRemoving all the observations with missing primary keys
èKeeping exactly one observation for each primary key



Count Frequencies of the Primary Key

DataFrame.value_counts(dropna)
Arguments dropna: must be set to False, because the default is 

True and we need to see the missing values
Returns a Pandas Series object with all distinct values of 

DataFrame.col as index and their frequency as value

data[['id']].value_counts(dropna=False)

• value_counts() automatically sorts the unique values by their counts 
in descending order, so any values>1 appear at the top

For example,



Count Frequencies of the Primary Key

data[['id']].value_counts(dropna=False)
output

Clearly, there are duplicate observations 
for some values of the primary key “id” 



Drop Rows with Missing Primary Key

DataFrame.dropna(subset)
Arguments subset: a list of one or more column names
Returns a DataFrame object that drops observations with 

missing value in at least one variable among subset 
and keeps all other observations

• The method can also be performed inplace

data.dropna(subset=['id'],inplace=True)
For example,

Modifies data directly by dropping observations with missing 'id' values



Drop Rows with Missing Primary Key

data.dropna(subset=['id'],inplace=True)

The one observation with missing 
'id' is dropped from the data



Drop Duplicates by Primary Key

DataFrame.drop_duplicates(subset,keep)
Arguments subset: a list of one or more column names

keep: 'first' (default), 'last', False
Returns a DataFrame object that keeps exactly one observation 

for each unique value of subset

• The method can also be performed inplace. For example,
data.drop_duplicates(subset=['id'],keep='first',inplace=True)
Only the first occurrence (keep='first') of each unique value of 'id' is 
kept, and data is directly modified 



Drop Duplicates by Primary Key

data.drop_duplicates(subset=['id'], 
keep='first', inplace=True)

6 observations were removed, and the 
updated data now has unique 'id' values



Tips on Data Cleaning

• As a first step, very important to choose a primary key: drop 
missing values and duplicate rows relative to the primary key

• Be careful with different missing value types
• NaN (np.isnan): missing value for numeric types
• None: a generic data object (e.g., string, but not numeric)
• Empty string ('' or ""): sometimes treated as the missing 

value for string variables



Tips on Data Cleaning

• Make sure to harmonize data formats
ØE.g., "fifteen", 15, "0015", and 15.00 are different ways to express the 

same number 15, so they should all become 15 with int as the data type

• Remove redundant columns (in principle 3NF, but not strictly)
ØE.g., delete intermediate columns created to clean or process data

• Sort the rows in some order that is useful for data analysis
ØE.g., often in ascending order of the primary key, but not always



Exercise: Data Cleaning (Advanced)
Work on part of Assignment 1, Problem 2(f): “Write Python code to 
execute your relational model database re-design and produce the 
data tables corresponding to your proposed design.”

1. Read the CSV file assignment1_venmo_dataset_jul2018.csv 
into a Pandas DataFrame

2. Define the primary key to uniquely identify each transaction

3. Design and create a transactions table that satisfies the Third 
Normal Form (3NF): each column has atomic values (1NF), and 
no partial or transitive dependencies (2NF and 3NF).


