
12/27/25 1

Exploring &
Modifying Data
1405 Instructor: Ruiqing (Sam) Cao

Required Python Libraries for Today

Core
• NumPy, Pandas

Visualization
• Matplotlib, Seaborn

Statistical learning
• scikit-learn, SciPy, statsmodels

import numpy as np
import pandas as pd

import sklearn
import scipy
import statsmodel as sm

from matplotlib import pyplot as plt
import seaborn as sns

NumPy & Pandas Printing Format

• NumPy

• Pandas
pd.options.display.float_format = '{:.3f}'.format

np.set_printoptions(precision=3,suppress=True)

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

Pandas DataFrame: Review

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

Column names
(df.columns)

Row index
(df.index)

df=

Q: Must column names and
row indexes be unique?

Q: Is each column or row a
Pandas Series?

12/27/25 5

Explore a DataFrame

Examine a Pandas DataFrame
Read the CSV file
census_data.csv
into a DataFrame
df:

View the first few rows of a DataFrame
Display the first n rows of the DataFrame df

df.head(n)

Examine a Pandas DataFrame

When exploring a new dataset, ask yourself:

• What are the key quantitative variables measured?

• What is the data type of each variable?

• How many observations are there?

• Which variables uniquely identify each observation?

Examine a Pandas DataFrame
When exploring a new dataset, ask yourself:

• What are the key quantitative variables measured?
Øpopulation, median_age, median_income, below_poverty_line

• What is the data type of each variable?
Øint, float, int, float

• How many observations are there?

• Which variables uniquely identify each observation?

Shape of a DataFrame

Shape of the DataFrame df is a tuple (columns, rows)
df.shape

Number of rows (observations) in df df.shape[0]

Number of columns (variables) in df df.shape[1]

(104, 7)

104

7

Examine a Pandas DataFrame
When exploring a new dataset, ask yourself:

• What are the key quantitative variables measured?
Øpopulation, median_age, median_income, below_poverty_line

• What is the data type of each variable?
Øint, float, int, float

• How many observations are there?
Ø104

• Which variables uniquely identify each observation?

Column Names of a DataFrame

Return all column names (variables) of the DataFrame df
df.columns

Convert the index array into a list of column names
df.columns.tolist()

output

output

Return the entire index of the DataFrame
df.index

Very often simplify the result by converting it to a list
df.index.tolist()

Row Indexes of a DataFrame

output

output

Frequency Counts of Unique Values

• Get the frequency counts of one variable
(Series) or a group of variables (DataFrame)

DataFrame.value_counts()
…Returns a Pandas Series indexed by the
unique values of the variables in DataFrame
and containing their frequency counts

Example:
df[['state_name','year']].value_counts()

output

The counts are sorted in
descending order by
default. Top value of 1
means (state_name,
year) is a candidate key

Examine a Pandas DataFrame
When exploring a new dataset, ask yourself:

• What are the key quantitative variables measured?
Øpopulation, median_age, median_income, below_poverty_line

• What is the data type of each variable?
Øint, float, int, float

• How many observations are there?
Ø104

• Which variables uniquely identify each observation?
Ø(state_name, year) or (state_fips, year)

Row Indexes can be other than 0 to N-1

• Create some data and convert it into a Pandas DataFrame
dict_cols = {'order':[1,2,3,4,5],'isFemale':[False,True,True,True,False]}
df = pd.DataFrame(dict_cols,index=['Tom','Char','Karen','Lin','Jess’])
display(df)

output >>> display(df.index)

output

Row Indexes can be non-unique

• Create some data and convert it into a Pandas DataFrame
dict_cols = {'month':[2,3,3,2,3],'name':['Tom','Char','Karen','Lin','Jess']}
df = pd.DataFrame(dict_cols,index=[0,0,1,1,2])
display(df)

output >>> display(df.index)

output

Select a Row by Row Index

• Get the row Series corresponding to the index “Char” (note the
row number is 1)

df=
Equivalently:

df.loc['Char']

df.iloc[1]
Or

output

Select Several Rows by Row Indexes

• Get the data corresponding to the index “Tom” and “Lin” (note the
row numbers are 0 and 3)

df=
Equivalently:

df.loc[['Tom','Lin']]

df.iloc[[0,3]]
Or

output

Filter a DataFrame Conditionally

• Similar to Boolean indexing: Select observations (i.e., rows) in the
DataFrame df that satisfies conditions

b = conditions(df.x1,…,df.xk)
• Filter the original DataFrame

df_filtered = df[b]

ØIn one step (do not separately store the Boolean array b):
df_filtered =df[conditions(df.x1,…,df.xk)]

Filter a DataFrame Conditionally

Example: Read the CSV file census_data.csv into a DataFrame, and
select observations where the state is California

df[df.state_name=='California']

output

Select a Column by Column Name

• Get the column Series corresponding to the variable (or column
called) “isFemale”

df['isFemale']
df=

Equivalently:

df.isFemale
Or

output

Select Several Columns by Column Names

• Get the column Series corresponding to the variables (or columns
called) “name” and “isFemale”

df[['name','isFemale']]
df=

output

Summary Statistics of a DataFrame

• Basic summary statistics: mean, median, standard deviation,
variance, weighted average (requires sum), and quantiles (any
number q in the interval [0,1])
• Operates on all columns of df at once (when axis=0)

Mean Median StDev Variance Quantiles Sum
df.mean() df.median() df.std() df.var() df.quantile(q) df.sum()

Notes on optional arguments:
Ø skipna=True by default (skip missing values)
Ø axis='index' (0) by default (operate across rows)

Frequency Histogram of a DataFrame

• Plot the frequency distribution of all numerical variables in
DataFrame df

df.hist()

Notes on optional arguments:
Ø density=False by default (plots frequency histogram)
Ø column specifies one or a list of variable(s) to plot
Ø bins specifies how values are aggregated into bins for plotting

Exercise: Filter & Summarize Data
1. Read the file census_data.csv into a Pandas DataFrame named df, and print the

last 10 rows of the DataFrame using df.tail()
2. Create a new DataFrame that includes only the rows where the year variable is

equal to 2020, and print the shape of the new DataFrame
3. In the new DataFrame, keep only the following columns: state_name,

population, median_age, median_income, and below_poverty_line
4. Display the rows where state_name includes Texas, Florida, and Ohio.
5. Find the number of observations where median_income is higher than the value

for Ohio, and list the state names for these observations
6. Find the number of observations where median_age is lower than the value

for Florida. and list the state names for these observations
7. Create a subset of the data where population is smaller than the population

of Texas. For this subset: Generate summary statistics (mean, StDev, minimum,
maximum, P25, and P75), and plot frequency distributions for all numeric
variables (hint: use df.select_dtypes(include="number"))

12/27/25 27

Modify a DataFrame

Row Indexes: Default & Primary Key
• The index is sometimes left alone as the default index (sequence

of integers from 0 to N)
• The index is sometimes set to the primary key, which locates

each observation uniquely in the data

df.set_index('ord')

df.reset_index()

Set Row Indexes to Some Column(s)

DataFrame.set_index(columns)
Argument The column or list of columns to be set as the new

indexes
Returns a Pandas DataFrame indexed by columns

DataFrame.set_index(columns,inplace=True)
Argument The column or list of columns to be set as the new

indexes
Returns None [DataFrame is directly modified, with columns as

the indexes without returning a new object]

Reset Row Indexes to Default Integers

DataFrame.reset_index()
Argument N/A
Returns a Pandas DataFrame with the default indexes, and the

original indexes recovered in a new column

DataFrame.reset_index(inplace=True)
Argument N/A
Returns None [DataFrame is directly modified to have the

default indexes, and the original indexes recovered in a
new column, without returning a new object]

Drop One or Multiple Column(s)

DataFrame.drop(columns)
Argument columns: column or list of columns to be dropped
Returns a new Pandas DataFrame without columns

DataFrame.drop(columns,inplace=True)
Argument columns: column or list of columns to be dropped
Returns None [columns are dropped from DataFrame, without

returning a new object]

Rename One or More Column(s)

DataFrame.rename(columns=dict({old:new})
Argument columns: a dictionary mapping the old column names

into new names (must specify columns= explicitly)
Returns a Pandas DataFrame with the new column names

• DataFrame.rename() becomes an inplace method when
inplace=True is passed as an argument

Create & Modify an Entire Column

Create (if does not exist) or modify (if exists) a column named col
df[col] = values

Examples:
ØCreate a new column with numeric missing values

• Replace a column by casting it to string type

• Create a new column from arithmetic operations on existing columns

df['placeholder'] = np.nan

df['median_income'] = df['median_income'].astype(str)

df['pop1'] = df['population']*df['below_poverty_line']

Modify a Column Conditionally

→ Similar to Boolean indexing for np.array and pd.Series
Create a 1D Boolean array (of same length as number of rows in df)

b = (conditional expression)
Modify df’s column into values wherever the condition b is True

df.loc[b,column] = values

All in one step (no need to store the Boolean array separately):
df.loc[conditional statement,column] = values

Drop Rows Containing Missing Values

DataFrame.dropna(subset)
Argument subset: column or list of columns to check for missing

values (default to all columns if not provided)
Returns a Pandas DataFrame after removing any rows with NaN

or None values in one of the subset columns

• DataFrame.dropna() becomes an inplace method when
inplace=True is passed as an argument

Fill Missing Values in One Column

• Avoid using the inplace method when you need to modify a column
Series in a larger DataFrame. Return the new values, and use the
assignment statement to modify the column instead.
• Starting in Pandas 3.0, intermediate objects (such as a Series from a

larger DataFrame) will behave as a copy (hence the inplace method on
the intermediate object should not change the entire DataFrame)

Series.fillna(value)
Argument value: a single scalar value to fill missing values with
Returns a Pandas Series with missing values filled as value

Fill Missing Values in Multiple Columns

• DataFrame.fillna() becomes an inplace method when
inplace=True is passed as an argument

DataFrame.fillna(value)
Argument value: a dictionary mapping each column name to a

single value to fill missing data in that column with
Returns a Pandas DataFrame with missing data filled according

to the rule specified in value

Exercise: Data Cleaning (Basic)
1. Read the file census_data.csv into a Pandas DataFrame named df.

Randomly replace some values in the columns year, state_fips,
or median_income with missing values

2. Rename below_poverty_line to povline, and rename population to pop
3. Remove the column state_name from the DataFrame
4. Add a new column post: Set it to 1 if year is 2020; Set it to 0 if year is 2010
5. Remove rows with missing values in either year or state_fips, and make

sure they are both integer types
6. Fill missing values in median_income with its sample average
7. For rows where year is 2010, set median_income above 32000 to missing
8. Set the DataFrame’s index to a combination of state_fips and year

Add a New Row

df.loc[df.shape[0]]= newrow where newrow must have matched
columns (same size and type as each row Series in df)

data.loc[data.shape[0]] = ['Texas',2010,25385,24311891,0.168]

data=

Concatenate Rows of Two DataFrames

pd.concat([df1,df2]) where df1 and df2 are two DataFrames that
may or may not have overlapping column names

data_stacked = pd.concat([data_CA,data_TX])

data_CA= data_TX=

Sort Rows (Observations) by Index

DataFrame.sort_index(ascending,inplace)
Argument ascending: Optional and defaults to True

inplace: optional and defaults to False
Returns DataFrame sorted on the row indexes, or None (inplace)
• Arguments: If no argument is passed, the method returns the sorted

DataFrame in ascending order of its row indexes; If ascending=False, the
sort is reversed to descending order; if composite indexes, ascending can
be a list of True/False values; If inplace=True, DataFrame is directly
modified, and the method returns None
• Composite indexes consisting of multiple variables (key0, key1,...):

DataFrame is sorted lexicographically on (key0, key1, ...), with earlier
keys taking precedence over later keys

Sort Rows by One or More Columns

DataFrame.sort_values(by,ascending,inplace)
Argument by: name(s) of a column(s) to sort on

ascending: Optional and defaults to True
inplace: Optional and defaults to False
[axis: Optional and defaults to 0 ('index’)]

Returns a DataFrame with rows sorted based on by

• The axis argument: since we are primarily concerned with sorting rows (not
columns), axis should always be 0 (default), we can simply ignore it for now
• ascending & inplace work similarly to those in DataFrame.sort_index()

Unique Identifier in a DataFrame
Primary Key: one or several columns that uniquely identify each
row (indexes should be reset to default, as they should not contain
useful data)

Two related methods to clean the data and ensure no two rows in
the DataFrame should have the same primary key

• Drop duplicates: Keep only one (and any arbitrary one) among all the
observations with the same primary key

• Aggregate the data (next time): Group by the primary key, and
aggregate the values of remaining columns into (1) the average (2) the
first/last observation after sorting (3) some other value

Drop Duplicate Rows

DataFrame.drop_duplicates(subset,inplace)
Argument subset: Optional and defaults to all variables

inplace: Optional and defaults to False
Returns a DataFrame where no two rows have the same value

across all variables in subset

• The subset argument: one column or a list of columns (as primary key)
• DataFrame.drop_duplicates() becomes an inplace method when
inplace=True is passed as an argument

Exercise: Data Cleaning (Medium)
1. Read the file census_data.csv into a Pandas DataFrame named df.

Create two DataFrames: df2010 containing rows where year is 2010;
df2020 containing rows where year is 2020

2. Sort df2010 by median_age in descending order and population in
ascending order (within ties of median_age). Delete the first 10 rows
of the sorted df2010

3. Sort df2020 by median_income in ascending order. Delete the last
10 rows of the sorted df2020

4. Concatenate df2010 and df2020 along the rows to create a
combined DataFrame

5. Sort the combined DataFrame by population in descending order
6. Drop the column year from the combined DataFrame, and then drop

duplicate rows based on state_fips and state_name

