Exploring &
Moditying Data

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

Pandas DataFrame: Review

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

Column names

df= i df.columns)
| name age isFemale

Row index Char 10 False Q: Must column names and
(df.index) row indexes be unique?
Lin -1 True
= Q: Is each column or row a

Pandas Series?

Explore a DataFrame

Examine a Pandas DataFrame

R ea d th e C SV fl l e state_name state_fips year population median_age median_income below_poverty_line
census_data.csv 0 Alabama 01 2010 4712651 37.5 22141 0.171106
into a DataFrame 1 Alaska 02 2010 691189 33.8 31238 0.095206
d.F: 2 Arizona 04 2010 6246816 35.5 26913 0.152711
3 Arkansas 05 2010 2872684 37.2 21286 0.180122

4 California 06 2010 36637290 34.9 27733 0.137134

47 Delaware 10 2020 967679 41.0 35089 0.114358

48 Puerto Rico 72 2020 3255642 42 .4 13898 0.434075

49 Kentucky 21 2020 4461952 39.0 28270 0.166069

50 South Dakota 46 2020 879336 37.2 32789 0.128088

51 Tennessee 47 2020 6772268 38.8 29605 0.146168

104 rows x 7 columns

View the first few rows of a DataFrame

Display the first n rows of the DataFrame df

df.head(n)

state_name state_fips year population median_age median_income below_poverty_line
0 Alabama 01 2010 4712651 37.5 22141 0.171106
1 Alaska 02 2010 691189 33.8 31238 0.095206
2 Arizona 04 2010 6246816 35.5 26913 0.152711
3 Arkansas 05 2010 2872684 37.2 21286 0.180122
4 California 06 2010 36637290 34.9 27733 0.137134
5 Colorado 08 2010 4887061 35.8 30261 0.122386
6 Connecticut 09 2010 3545837 39.5 33293 0.091504

Examine a Pandas DataFrame

When exploring a new dataset, ask yourself:
* What are the key quantitative variables measured?
* What is the data type of each variable?

* How many observations are there?

* Which variables uniquely identify each observation?

Examine a Pandas DataFrame

When exploring a new dataset, ask yourself:

* What are the key quantitative variables measured?
»population, median_age, median_income, below_poverty_line

* What is the data type of each variable?
»int, float, int, float

* How many observations are there?

* Which variables uniquely identify each observation?

Shape of a DataFrame

Shape of the DataFrame df is a tuple (columns, rows)

EEUERE —> (104, 7)

Number of rows (observations) in df [AEEElEKl| —> 194

Number of columns (variables) indf [N —> 7

Examine a Pandas DataFrame

When exploring a new dataset, ask yourself:

* What are the key quantitative variables measured?
»population, median_age, median_income, below_poverty_line

* What is the data type of each variable?
»int, float, int, float

* How many observations are there?
> 104

* Which variables uniquely identify each observation?

Column Names of a DataFrame

Return all column names (variables) of the DataFrame df
df.columns

Index(['state_name', 'state_fips', 'year', 'population', 'median_age',

'median_income', 'below_poverty_line'l],
dtype='object"')

Convert the index array into a list of column names

df.columns.tolist()

<

['state_name', 'state_fips', 'year', 'population', 'median_age', 'median_income', 'below_poverty_line']

Row Indexes of a DataFrame

Return the entire index of the DataFrame

df.index

df . index
"

RangeIndex(start=0, stop=104, step=1)

Very often simplify the result by converting it to a list
df.index.tolist()

[0,
31,
60,
89,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
99, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103]

Frequency Counts of Unique Values

* Get the frequency counts of one variable e coumts are sorted i
(Series) or a group of variables (DataFrame) descending order by

default. Top value of 1
means (state_name,
year) is a candidate key

DataFrame.value counts()

...Returns a Pandas Series indexed by the

. . . tat
unique values of the variables in DataFrame |ibam 2010
> o . 2020
and containing their frequency counts Sennsyiganial ile
Oregon 2020
Example: 2010
df[['state_name', 'year']].value_counts() |Iow e
Indiana 2020
2010
Wyoming 2020

Name: count, Length: N4, dtype: int64

Examine a Pandas DataFrame

When exploring a new dataset, ask yourself:

* What are the key quantitative variables measured?
»population, median_age, median_income, below_poverty_line

* What is the data type of each variable?
»int, float, int, float

* How many observations are there?
> 104

* Which variables uniquely identify each observation?
> (state_name, year) or (state_fips, year)

Row Indexes can be other than 0 to N-1

* Create some data and convert it into a Pandas DataFrame
dict _cols = {'order':[1,2,3,4,5], 'isFemale’:[False,True,True,True,False]}

df = pd.DataFrame(dict cols,index=["'Tom', 'Char', 'Karen','Lin’', 'Jess’])
display(df)

order isFemale

Tom 1 False
m chor 2 Tue s> display(df.index)
Karen 3 True @
Lin 4 True

Index(['Tom', 'Char', 'Karen', 'Lin', 'Jess'], dtype='object')

Jess 5 False

Row Indexes can be non-unique

e Create some data and convert it into a Pandas DataFrame

dict _cols = {'month':[2,3,3,2,3], 'name':['Tom', 'Char', 'Karen', 'Lin', 'Jess']}
df = pd.DataFrame(dict_ cols,index=[0,0,1,1,2])
display(df)

month name

0 2 Tom
>>> display(df.index)
0 3 Char w

1 2 Lin Index([0, 0, 1, 1, 2], dtype='int64"')

1 3 Karen

2 3 Jess

Select a Row by Row Index

* Get the row Series corresponding to the index “Char” (note the
row numberis 1)

dor isFernal Equivalently:
d'F oraer Isremaie

df.loc['Char']

Tom 1 False

Gz o

Karen 3 True df.iloc[1] w
Lin 4 True

order 2
Jess S False isFemale True
Name: Char, dtype: object

Select Several Rows by Row Indexes

* Get the data corresponding to the index “Tom” and “Lin” (note the

row numbers are 0 and 3) .
Equivalently:

order isFemale
df= — | — [| [] [| o [|
m d'F.loc[[Tom', 'Lin]]
Char 2 True Or
Karen 3 True df.iloc[[0,3]] @
@ order isFemale
Jess 5 False e 1 el
Lin 4 True

Filter a DataFrame Conditionally

* Similar to Boolean indexing: Select observations (i.e., rows) in the
DataFrame df that satisfies conditions

= conditions(df.x1,..,df.xk)

* Filter the original DataFrame
df filtered = df[b]

»1n one step (do not separately store the Boolean array b):
df filtered =df[conditions(df.x1,..,df.xk)]

Filter a DataFrame Conditionally

Example: Read the CSV file census_data.csv into a DataFrame, and
select observations where the state is California

df[df.state_name=="'California’]

&

state_name state_fips year population median_age median_income below_poverty_line

4 California 6 2010 36637290 34.9 27733 0.137134
53 California 6 2020 39346023 36.7 34196 0.125770

Select a Column by Column Name

* Get the column Series corresponding to the variable (or column

called) “isFemale”
df=

name order

0 Tom 1
1 Char 2
2 Karen 3
3 Lin 4

4 Jess 5

Equivalently:
df["isFemale']

Or
df.isFemale

)
1
2
3
4
N

False
True
True
True
False
ame: isFemale, dtype: bool

Select Several Columns by Column Names

* Get the column Series corresponding to the variables (or columns
called) “name” and “isFemale”

df[["'name’, "isFemale']]
name isFemale
0 Tom False
m 1 Char True
2 Karen True
3 Lin True
4 Jess False

Summary Statistics of a DataFrame

* Basic summary statistics: mean, median, standard deviation,
variance, weighted average (requires sum), and quantiles (any
number g in the interval [0,1])

* Operates on all columns of df at once (when axis=0)

__Mean | Median | StDev_| Variance | _ Quantiles | _Sum _

df.mean() df.median() df.std() df.var() df.quantile(q) df.sum()

Notes on optional arguments:
» skipna=True by default (skip missing values)
» axis='index' (@) by default (operate across rows)

Frequency Histogram of a DataFrame

* Plot the frequency distribution of all numerical variables in
DataFrame df

df.hist()

Notes on optional arguments:

» density=False by default (plots frequency histogram)

» column specifies one or a list of variable(s) to plot

» bins specifies how values are aggregated into bins for plotting

Exercise: Filter & Summarize Data

1. Read the file census_data.csv into a Pandas DataFrame named df, and print the
last 10 rows of the DataFrame using df.tail()

2. Create a new DataFrame that includes only the rows where the year variable is
equal to 2020, and print the shape of the new DataFrame

3. Inthe new DataFrame, keep only the following columns: state_name,
population, median_age, median_income, and below_poverty_line

4. Display the rows where state_name includes Texas, Florida, and Ohio.

5. Find the number of observations where median_income is higher than the value
for Ohio, and list the state names for these observations

6. Findthe number of observations where median_age is lower than the value
for Florida. and list the state names for these observations

7. Create a subset of the data where population is smaller than the population
of Texas. For this subset: Generate summary statistics (mean, StDev, minimum,
maximum, P25, and P75), and plot frequency distributions for all numeric
variables (hint: use df.select _dtypes(include="number"))

Modity a DataFrame

Row Indexes: Default & Primary Key

* The index is sometimes left alone as the default index (sequence
of integers from 0 to N)

* The index is sometimes set to the primary key, which locates
each observation uniquely in the data

name isFemale

ord name isFemale]
. S df.set_index('ord')

> Tom False

2 Char True
Char True

3 Karen True
A T . Karen True

in rue .

df.reset_index() Lin True

5 Jess False
Jess False

Set Row Indexes to Some Column(s)

_ DataFrame.set_index(columns)

Argument The column or list of columns to be set as the new
Indexes

Returns a Pandas DataFrame indexed by columns

_ DataFrame.set_index(columns,inplace=True)

Argument The column or list of columns to be set as the new
Indexes

Returns None [DataFrame is directly modified, with columns as
the indexes without returning a new object]

Reset Row Indexes to Default Integers

_ DataFrame.reset _index()

Argument N/A

Returns a Pandas DataFrame with the default indexes, and the
original indexes recovered in a new column

_ DataFrame.reset _index(inplace=True)
Argument N/A

Returns None [DataFrame is directly modified to have the
default indexes, and the original indexes recovered in a
new column, without returning a new object]

Drop One or Multiple Column(s)

_ DataFrame.drop(columns)

Argument columns: column or list of columns to be dropped

Returns a new Pandas DataFrame without columns

_ DataFrame.drop(columns,inplace=True)

Argument columns: column or list of columns to be dropped

Returns None [columns are dropped from DataFrame, without
returning a new object]

Rename One or More Column(s)

_ DataFrame.rename(columns=dict({old:new})

Argument columns: a dictionary mapping the old column names
into new names (must specify columns= explicitly)

Returns a Pandas DataFrame with the new column names

 DataFrame.rename() becomes an inplace method when
inplace=True is passed as an argument

Create & Modify an Entire Column

Create (if does not exist) or modify (if exists) a column named col
df[col] = values

Examples:

»Create a new column with numeric missing values
df['placeholder’'] = np.nan

* Replace a column by casting it to string type
df['median_income'] = df['median_income'].astype(str)

* Create a new column from arithmetic operations on existing columns
df['popl’'] = df['population’']*df[" 'below poverty line']

Modify a Column Conditionally

> Similar to Boolean indexing for np.array and pd.Series
Create a 1D Boolean array (of same length as number of rows in df)
b = (conditional expression)
Modify df’s column into values wherever the condition b is True
df.loc[b,column] = values

All in one step (no need to store the Boolean array separately):
df.loc[conditional statement,column] = values

Drop Rows Containing Missing Values

_ DataFrame.dropna(subset)

Argument subset: column or list of columns to check for missing
values (default to all columns if not provided)

Returns a Pandas DataFrame after removing any rows with NaN
or None values in one of the subset columns

* DataFrame.dropna() becomes an inplace method when
inplace=True is passed as an argument

Fill Missing Values in One Column

_ Series.fillna(value)

Argument value: a single scalar value to fill missing values with

Returns a Pandas Series with missing values filled as value

* Avoid using the inplace method when you need to modify a column
Series in a larger DataFrame. Return the new values, and use the
assignment statement to modify the column instead.

e Starting in Pandas 3.0, intermediate objects (such as a Series from a
larger DataFrame) will behave as a copy (hence the inplace method on
the intermediate object should not change the entire DataFrame)

Fill Missing Values in Multiple Columns
_ DataFrame.fillna(value)

Argument value: adictionary mapping each column nameto a
single value to fill missing data in that column with

Returns a Pandas DataFrame with missing data filled according
to the rule specified in value

* DataFrame.fillna() becomes aninplace method when
inplace=True is passed as an argument

Exercise: Data Cleaning (Basic)

1.

gl B

o

Read the file census_data.csv into a Pandas DataFrame named df.
Randomly replace some values in the columns year, state_fips,
or median_income with missing values

Rename below_poverty_line to povline, and rename population to pop
Remove the column state_name from the DataFrame
Add a new column post: Setitto 1 if yearis 2020; Setitto O if year is 2010

Remove rows with missing values in either year or state_fips, and make
sure they are both integer types

Fill missing values in median_income with its sample average
For rows where year is 2010, set median_income above 32000 to missing

Set the DataFrame’s index to a combination of state_fips and year

Add a New Row

df.loc|df.shape[0@] |= newrow where newrow must have matched
columns (same size and type as each row Series in df)

d ata= state_name year median_income population below_poverty_line
4 California 2010 27733 36637290 0.137
53 California 2020 34196 39346023 0.126

data.loc[data.shape[©0]] = ['Texas',2010,25385,24311891,0.168]

4

state_name year median_income population below_poverty line

4 California 2010 27733 36637290 0.137
53 California 2020 34196 39346023 0.126
2 Texas 2010 25385 24311891 0.168

Concatenate Rows of Two DataFrames

pd.concat([dfl,df2]) where dfl and df2 are two DataFrames that
may or may not have overlapping column names

d at a C A= state_name year median_income d at a TX= state_name year population
4 California 2010 27733 43 Texas 2010 24311891
53 California 2020 34196 76 Texas 2020 28635442

data_stacked = pd.concat([data _CA,data TX])

population

state_name year median_income

4 California 2010 27733.000

53 California 2020 34196.000

43 Texas 2010 NaN \ 24311891.000
76 Texas 2020 NaN / 28635442.000

Sort Rows (Observations) by Index

_ DataFrame.sort_index(ascending,inplace)

Argument ascending: Optional and defaults to True
inplace: optional and defaults to False

Returns DataFrame sorted on the row indexes, or None (inplace)

* Arguments: If no argument is passed, the method returns the sorted
DataFrame in ascending order of its row indexes; If ascending=False, the
sort is reversed to descending order; if composite indexes, ascending can
be a list of True/False values; If inplace=True, DataFrame is directly
modified, and the method returns None

 Composite indexes consisting of multiple variables (key@, keyl,...):
DataFrame is sorted lexicographically on (keyo, keyl, ...),with earlier

keis takinﬁ Erecedence over later keﬁs

Sort Rows by One or More Columns

_ DataFrame.sort_values(by,ascending,inplace)

Argument by: name(s) of a column(s) to sort on
ascending: Optional and defaults to True
inplace: Optional and defaults to False
[ax1s: Optional and defaultsto @ (' 1ndex’)]

Returns a DataFrame with rows sorted based on by

 The axis argument: since we are primarily concerned with sorting rows (not
columns), axis should always be 0 (default), we can simply ignore it for now

« ascending & inplace work similarly to those in DataFrame.sort_index()

Unique ldentifier in a DataFrame

Primary Key: one or several columns that uniquely identify each
row (indexes should be reset to default, as they should not contain

useful data)

Two related methods to clean the data and ensure no two rows in
the DataFrame should have the same primary key

* Drop duplicates: Keep only one (and any arbitrary one) among all the
observations with the same primary key

 Aggregate the data (next time). Group by the primary key, and
aggregate the values of remaining columns into (1) the average (2) the
first/last observation after sorting (3) some other value

Drop Duplicate Rows

_ DataFrame.drop_duplicates(subset,inplace)

Argument subset: Optional and defaults to all variables
inplace: Optional and defaults to False

Returns a DataFrame where no two rows have the same value
across all variables in subset

 The subset argument: one column or a list of columns (as primary key)

 DataFrame.drop duplicates() becomes aninplace method when
inplace=True is passed as an argument

Exercise: Data Cleaning (Medium)

1. Read the file census_data.csv into a Pandas DataFrame named d+.
Create two DataFrames: d¥2010 containing rows where year is 2010;
df2020 containing rows where year is 2020

2. Sortdf2010 by median_age in descending order and population in
ascending order (within ties of median_age). Delete the first 10 rows

of the sorted d2010

3. Sortdf2020 by median_income in ascending order. Delete the last
10 rows of the sorted d£2020

4. Concatenate d¥2010 and d£2020 along the rows to create a
combined DataFrame

5. Sortthe combined DataFrame by population in descending order

6. Drop the column year from the combined DataFrame, and then drop
duplicate rows based on state_fips and state_name

