
12/27/25 1

Pandas DataFrame
1405 Instructor: Ruiqing (Sam) Cao

Required Python Libraries for Today

Core
• NumPy, Pandas

Visualization
• Matplotlib, Seaborn

Statistical learning
• scikit-learn, SciPy, statsmodels

import numpy as np
import pandas as pd

import sklearn
import scipy
import statsmodel as sm

from matplotlib import pyplot as plt
import seaborn as sns

NumPy & Pandas Printing Format

• NumPy

• Pandas
pd.options.display.float_format = '{:.3f}'.format

np.set_printoptions(precision=3,suppress=True)

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

Combine Row Series Into DataFrame
Concatenate row Series (i.e., realized values of all variables
for the same observation) into a Pandas DataFrame
row_0 = pd.Series(['Char',10,False],
index=['name','age','isFemale’])

row_1 = pd.Series(['Lin',-1,True],
index=['name','age','isFemale’])

pd.DataFrame([row_0,row_1]) output

Pandas
DataFrame

Stack
the

rows

Combine Column Series Into DataFrame
Concatenate column Series (i.e., realized values of the same
variable for all observations) into a Pandas DataFrame
col_name = pd.Series(['Char','Lin'],name='name’)
col_age = pd.Series([10,-1],name='age’)
col_isFemale = pd.Series([False,True],name='isFemale')

pd.concat([col_name,col_age,col_isFemale],axis=1)
output

Stack the columns

Pandas DataFrame

Traverse a DataFrame Row by Row

for index, row in df.iterrows():
 ... row is a Pandas Series, and

index is the name of that Series

df= index=0 row=

index=1 row=

Pandas DataFrame: Review

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

Column names
(df.columns)

Row index
(df.index)

df=

Q: Must column names and
row indexes be unique?

Q: Is each column or row a
Pandas Series?

12/27/25 8

Read & Create
a DataFrame

Input Sources for Pandas DataFrame

• Files containing tabular data: e.g., CSV files, Stata files

• Files storing semi-structure data: e.g., JSON files, HTML files

• Built-in Python data types:
• Array-like objects: e.g., lists, NumPy arrays
• Dictionaries

Read Tabular Data Into a DataFrame

pd.read_csv(argument)
Arguments string containing the path and name of the CSV file
Returns a Pandas DataFrame containing the stored data

pd.read_csv(arg, chunksize=N)
Arguments arg: string containing path and name of the CSV file

N: number of rows to read in each iteration
Returns (iterate through the file until reaching the end of file)

a Pandas DataFrame containing N rows of the data
Note: The second approach of reading the data as a sequence of smaller chunks is
very useful for processing very large CSV files (e.g., with more than 1 million rows)

Read Tabular Data Into a DataFrame

• From a CSV (*.csv) file
df = pd.read_csv('pathtofile/f.csv')

ØFor very large CSV files, read the file in chunks

• From a Stata (*.dta) file
df = pd.read_stata('pathtofile/filename.dta')

ØFor very large Stata files, read the file in chunks

for chunk in pd.read_csv('pathtofile/f.csv',chunksize=N):
 ...

for chunk in pd.read_stata('pathtofile/f.dta',chunksize=N):
 ...

Create a DataFrame from Built-In Types

pd.DataFrame(arg,columns=c,index=d)
Arguments arg: an array-like object (e.g., list) or a dictionary

c: None (default) or a 1D array-like object (e.g., list)
d: None (default) or a 1D array-like object (e.g., list)

Returns a Pandas DataFrame containing the stored data

pd.DataFrame.from_dict(arg,orient='index', _otheroptions)
Arguments arg: a dictionary
Returns a Pandas DataFrame containing the stored data

Create a DataFrame from Built-In Types

Most common ways to create a Pandas DataFrame:

• From a dictionary of column arrays (e.g., lists, series)

• From a list of row dictionaries

• From a 2D matrix (with column names)

• From a 2D dictionary

• From a JSON string

From a dictionary of column arrays

data= {'col0':array_col0,...} where array_col0,... is
any array-like object such as list, Pandas Series, NumPy array

df = pd.DataFrame(data)
• Example:

>> dict_cols=
{'name':['Thomas','Charles','Karen','Linda','Jessica','William','Su
san','John','David','Jennifer'],
'ID':[10000,10001,10002,10003,10004,10005,10006,10007,10008,10009]}

>> df = pd.DataFrame(dict_cols)

From a list of row dictionaries

data= [{'col0':v00,...,'coln':v0n},...] where each element is
a dictionary that maps variables col0,...coln to values in one observation

df = pd.DataFrame(data)
• Example:
>> list_rows =
[{'name':'Thomas','ID':10000},{'name':'Charles','ID':10001},{'name':'Kare
n','ID':10002},{'name':'Linda','ID':10003},{'name':'Jessica','ID':10004},
{'name':'William','ID':10005},{'name':'Susan','ID':10006},{'name':'John',
'ID':10007},{'name':'David','ID':10008},{'name':'Jennifer','ID':10009}]

>> df = pd.DataFrame(list_rows)

From a 2D matrix (with column names)
The rectangular matrix data=[[v00,v01,...],...] and column
names colnames=[col0,...] with N observations and K variables

• If data is a list of rows (NxK)
df = pd.DataFrame(data,columns=colnames)

• If data is a list of columns (KxN)
df = pd.DataFrame(data).T

df.columns=colnames

From a 2D matrix (with column names)
The rectangular matrix data=[[v00,v01,...],...] and column
names colnames=[col0,...] with N observations and K variables
• Example: data is a list of rows

• Example: data is a list of columns

>> list_rows =
[['Thomas',10000],['Charles',10001],['Karen',10002],['Linda',10003],['Jessica',10
004],['William',10005],['Susan',10006],['John',10007],['David',10008],['Jennifer'
,10009]]
>> df = pd.DataFrame(list_rows,columns=['name','ID'])

>> list_cols =
[['Thomas','Charles','Karen','Linda','Jessica','William','Susan','John','David','
Jennifer'],[10000,10001,10002,10003,10004,10005,10006,10007,10008,10009]]
>> df = pd.DataFrame(list_cols).T
>> df.columns=['name','ID']

From a 2D dictionary

data= {index0:{'col0':v00,...},...} is a dictionary of row
dictionaries where each first-level item represents an observation,
with row index as the key and column dictionary as the value

df = pd.DataFrame.from_dict(data,orient='index’)
or equivalently,

df = pd.DataFrame(data).T

From a 2D dictionary

data= {index0:{'col0':v00,...},...} is a dictionary of row
dictionaries where each first-level item represents an observation,
with row index as the key and column dictionary as the value
Example:
>> dict_rows =
{0:{'name':'Thomas','ID':10000},1:{'name':'Charles','ID':10001},2:{'name':'Karen'
,'ID':10002},3:{'name':'Linda','ID':10003},4:{'name':'Jessica','ID':10004},5:{'na
me':'William','ID':10005},6:{'name':'Susan','ID':10006},7:{'name':'John','ID':100
07},8:{'name':'David','ID':10008},9:{'name':'Jennifer','ID':10009}}

>> df = pd.DataFrame.from_dict(dict_rows,orient='index’)
>> df_equiv = pd.DataFrame(dict_rows).T

Create DataFrame from a JSON string

• An example JSON string (web data)

>> json_text =
'[{"@context":"http://schema.org","@type":"WebApplication","name":"Notion
World","description":"Discover the powerful world of Notion with this free directory
of the best resources and tools about Notion. Whether you are a beginner or want to
boost your Notion skills, this curated list will help you find everything you need
to make you a Notion master.","datePublished":"2022-09-26T13:34:12.815-
07:00","aggregateRating":{"@type":"AggregateRating","ratingCount":6,"ratingValue":"5
.0","worstRating":1,"bestRating":5},"offers":{"@type":"Offer","price":0,"priceCurren
cy":"USD"},"applicationCategory":"Productivity"},{"@context":"http://schema.org","@t
ype":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"Ho
me","item":"https://www.producthunt.com/"},{"@type":"ListItem","position":2,"name":"
Notion World","item":"https://www.producthunt.com/products/notion-world"}]}]'

Create DataFrame from a JSON string

json.loads(text)
Argument a string type object satisfying certain syntax requirement
Returns a dictionary or a list containing the (parsed) JSON data

>> import json
>> json.parsed = json.loads(json_text)

>> type(json_parsed) output

Step 1. Parse the JSON string into a (nested) dictionary or list

Note: json_text must be a
valid JSON string, otherwise
json.loads(json_text)
cannot parse it and returns
an error instead

Requires the json module

Create DataFrame from a JSON string

Step 2. Examine the parsed JSON data

>> len(json_parsed)
>> type(json_parsed[0])
>> json_parsed[0].keys()
>> json_parsed[0]['aggregateRating']

→ The parsed JSON object is a list of
nested dictionaries. Try to explore the
data, for example:

Create DataFrame from a JSON string

pd.DataFrame(json_parsed)

Summary: JSON string → nested dictionary or list → pd.DataFrame. But resulting
data contain values of complex data types, and further data wrangling (next time)
is needed, e.g., aggregateRating[0] is a dictionary itemListElement[1] is a list

output

Step 3. Create a Pandas DataFrame from the parsed JSON object

All Roads Lead to Rome

• There are often more than one way to read the same input data

• Make sure resulting DataFrame has the right structure and data

• Here are common problems that can go wrong (and how to fix)
ØFlipped columns & rows: fix this by switching columns and rows, i.e.,

transposing the original DataFrame df using df.T
ØNo column names: fix this by assigning column names to df.columns
ØRow indexes are not 0 to N-1: fix this by using df.reset_index() to reset

indexes to default (0 to N-1)

Exercise: Read CSV and JSON Data

1.Read the file census_data.csv in chunks of 50 rows at a time
using Pandas. Display each chunk as a separate DataFrame.

2.Copy the raw JSON string (json_text) from “Create a DataFrame
from a JSON string” section and parse it into a JSON object

1.Identify all nested elements in the JSON object (e.g., dictionaries or lists)
2.Convert each nested element into a separate DataFrame (hint:

AggregateRating, Offer, and ListItem)
3.Get separate row Series from all the DataFrames, and combine them into

a single DataFrame (hint: use df.iterrows())
4.Reset the combined DataFrame’s indexes so that they are unique (hint:

use df.reset_index(drop=True) – we’ll learn more next session)

