Pandas DataFrame

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

Combine Row Series Into DataFrame

Concatenate row Series (i.e., realized values of all variables
for the same observation) into a Pandas DataFrame

row © = pd.Series(['Char',10,False],
index=['name’, "age', 'isFemale’])

row 1 = pd.Series(['Lin',-1,True],
index=['name’, "age', 'isFemale’])

pd.DataFrame([row_0,row_1]) m

name Char
age 10
isFemale False
dtype: object

name Lin
age -1
isFemale True
dtype: object

name age isFemale

0 Char 10 False

1 Lin -1 True

Pandas
DataFrame

Combine Column Series Into DataFrame

Concatenate column Series (i.e., realized values of the same

variable for all observations) into a Pandas DataFrame
col name = pd.Series(['Char','Lin'],name="name’)

col age = pd.Series([10,-1],name="age’)

col isFemale = pd.Series([False,True],name="isFemale")

pd.concat([col name,col age,col isFemale],axis=1)

0 Char 0 10 0 False
1 Lin 1 -1 1 True
Name: name, dtype: object|/Name: age, dtype: int64|Name: isFemale, dtype: bool

0 Char 10 False

Stack the columns _
1 Lin -1 True

Pandas DataFrame

name age isFemale

Traverse a DataFrame Row by Row

for index, row in df.iterrows():

oo row is a Pandas Series, and
indeXx is the name of that Series

df= . name Char
index=0 row=
. age 10
name age isFemale ,

isFemale False

o Char 10 Faise| NN Name: ©, dtype: object
1 Lin -1 True . name Lin
index=1 row=|,.. -1
isFemale True

Name: 1, dtype: object

Pandas DataFrame: Review

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

Column names

df= i df.columns)
| name age isFemale

Row index Char 10 False Q: Must column names and
(df.index) row indexes be unique?
Lin -1 True
= Q: Is each column or row a

Pandas Series?

Read & Create
a DataFrame

Input Sources for Pandas DataFrame

* Files containing tabular data: e.g., CSV files, Stata files

* Files storing semi-structure data: e.g., JSON files, HTML files

* Built-in Python data types:
* Array-like objects: e.g., lists, NumPy arrays
* Dictionaries

Read Tabular Data Into a DataFrame

pd.read _csv(argument)

Arguments string containing the path and name of the CSV file
Returns a Pandas DataFrame containing the stored data

pd.read csv(arg, chunksize=N)

Arguments arg: string containing path and name of the CSV file
N: number of rows to read in each iteration

Returns (iterate through the file until reaching the end of file)
a Pandas DataFrame containing N rows of the data

Note: The second approach of reading the data as a sequence of smaller chunks is

very useful for processing very large CSV files (e.g., with more than 1 million rows)

Read Tabular Data Into a DataFrame

* From a CSV (*.csv) file

df = pd.read csv('pathtofile/f.csv"')
»For very large CSV files, read the file in chunks

for chunk in pd.read csv('pathtofile/f.csv',chunksize=N):

* From a Stata (*.dta) file

df = pd.read stata('pathtofile/filename.dta’)
»For very large Stata files, read the file in chunks

for chunk in pd.read stata('pathtofile/f.dta',chunksize=N):

Create a DataFrame from Buili-In Types

pd.DataFrame(arg,columns=c,index=d)

Arguments arg: an array-like object (e.g., list) or a dictionary
c: None (default) or a 1D array-like object (e.g., list)
d: None (default) or a 1D array-like object (e.g., list)

Returns a Pandas DataFrame containing the stored data

pd.DataFrame.from dict(arg,orient="index', otheroptions)

Arguments arg: adictionary
Returns a Pandas DataFrame containing the stored data

Create a DataFrame from Buili-In Types

Most common ways to create a Pandas DataFrame:

* From a dictionary of column arrays (e.g., lists, series)

e From a list of row dictionaries

 From a 2D matrix (with column names)

* From a 2D dictionary

* From a JSON string
D

From a dictionary of column arrays

data= {'col@':array colo,...}wherearray colo,...is
any array-like object such as list, Pandas Series, NumPy array

df = pd.DataFrame(data)

* Example:

>> dict cols=

{'name':['Thomas', 'Charles', 'Karen', 'Linda', 'Jessica’', '"William', 'Su
san', 'John', 'David’, 'Jennifer'],
"ID':[10000,10001,10002,10003,10004,10005,10006,10007,10008,10009]}

>> df = pd.DataFrame(dict cols)

From a list of row dictionaries

data= [{'col@':v00,..., 'coln’':vOn},...] where eachelementis
a dictionary that maps variables col0,...coln to values in one observation

df = pd.DataFrame(data)

* Example:

>> list rows =

[{'name’':'Thomas', 'ID':10000},{ 'name’': 'Charles','ID':10001},{ 'name': 'Kare
n','ID':10002},{'name':'Linda', 'ID':10003},{ 'name': 'Jessica’', 'ID':10004},
{'name':'William', 'ID':10005},{ 'name’':'Susan', 'ID':10006},{ 'name':'John"',
'ID':10007},{ 'name’':'David', 'ID':10008},{ 'name':'Jennifer','ID':10009}]

>> df = pd.DataFrame(list rows)

From a 2D matrix (with column names)

The rectangular matrix data=[[v@0O,v0l,...],...] and column
names colnames=[col@, ...] with Nobservations and K variables

 If datais a list of rows (NxK)
df = pd.DataFrame(data,columns=colnames)

 If datais a list of columns (KxN)
df = pd.DataFrame(data).T

df.columns=colnames

From a 2D matrix (with column names)

The rectangular matrix data=[[v@O,Vv01l,...],...] and column
names colnames=[col@, ...] with Nobservations and K variables

* Example: data is a list of rows

>> list rows =

[['Thomas',10000],['Charles',10001],['Karen',10002],['Linda',10003],['Jessica',10
004],['William',10005],['Susan',10006],['John',10007], ['David',10008],["'Jennifer’
,10009]]

>> df = pd.DataFrame(list rows,columns=['name', 'ID'])

* Example: data is a list of columns

>> list cols =

[['Thomas', 'Charles', 'Karen', 'Linda', 'Jessica', '"William', 'Susan', 'John’', 'David’, "’
Jennifer'],[10000,10001,10002,10003,10004,10005,10006,10007,10008,10009]]

>> df = pd.DataFrame(list cols).T

>> df.columns=['name', 'ID"']

From a 2D dictionary

data= {index@:{'col@':v00,...},...}isadictionaryof row
dictionaries where each first-level item represents an observation,
with row index as the key and column dictionary as the value

df = pd.DataFrame.from dict(data,orient="index’)

or equivalently,

From a 2D dictionary

data= {index@:{'col@':v00,...},...}isadictionaryof row
dictionaries where each first-level item represents an observation,
with row index as the key and column dictionary as the value

Example:

>> dict_rows =

{0:{'name':'Thomas', 'ID':10000},1:{ " 'name': 'Charles','ID':10001},2:{ 'name’: 'Karen’
, ' ID':10002},3:{'name':'Linda', 'ID':10003},4:{ " 'name’':'Jessica’, 'ID':10004},5:{ 'na
me':'William',"'ID':10005},6:{ 'name':'Susan','ID':10006},7:{ 'name':"'John', 'ID':100
07},8:{'name': 'David', 'ID':10008},9:{ 'name': 'Jennifer', 'ID':10009}}

>> df = pd.DataFrame.from dict(dict rows,orient='index’)
>> df_equiv = pd.DataFrame(dict rows).T

Create DataFrame from a JSON string

* An example JSON string (web data)

>> json_text =
"[{"@context":"http://schema.org", "@type": "WebApplication", "name":"Notion

World", "description”:"Discover the powerful world of Notion with this free directory
of the best resources and tools about Notion. Whether you are a beginner or want to
boost your Notion skills, this curated list will help you find everything you need
to make you a Notion master.","datePublished":"2022-09-26T13:34:12.815-

07:00", "aggregateRating" :{"@type" :"AggregateRating","ratingCount":6, "ratingValue":"5

.0","worstRating":1, "bestRating":5}, "offers":{"@type" :"Offer","price":0,"priceCurren
cy":"USD"},"applicationCategory":"Productivity"}, {"@context":"http://schema.org","@t
ype":"BreadcrumbList","itemListElement":[{"@type":"ListItem","position":1,"name":"Ho

me","item" :"https://www.producthunt.com/"},{"@type":"ListItem","position":2,"name":
Notion World","item":"https://www.producthunt.com/products/notion-world"}]}]"

Create DataFrame from a JSON string

Step 1. Parse the JSON string into a (nested) dictionary or list

_ json.loads(text)

Argument a string type object satisfying certain syntax requirement
Returns a dictionary or a list containing the (parsed) JSON data

Requires the json module

Note: json_text mustbea
valid JSON string, otherwise
json.loads(json_ text)

>> import json
>> json.parsed = json.loads(json_text)

. . cannot parse it and returns
>> type(json_parsed) EENTIMP|1ist | |anerror instead

Create DataFrame from a JSON string

Step 2. Examine the parsed JSON data

[{'@context': 'http://schema.org',
'@type': 'WebApplication',
'name': 'Notion World',
'description': 'Discover the powerful world of Notion with this free directory of the best resources and tools ab

out Notion. Whether you are a beginner or want to boost your Notion skills, this curated list will help you find ev

erything you need to make you a Notion master.',
'datePublished': '2022-09-26T13:34:12.815-07:00"',
'aggregateRating': {'@type': 'AggregateRating’',

ratingvaluet s 1t > The parsed JSON object is a list of

'ratingValue': '5.0',

'worstRating': 1, . . .
‘bestRating': 5}, | | nested dictionaries. Try to explore the
'offers': {'@type': 'Offer', 'price': @, 'priceCurrency': 'USD'},

'applicationCategory': 'Productivity'}, data, for example:

{'@context': 'http://schema.org’',
'@type': 'BreadcrumbList',

'itemListEl t': [{'@t ' 'ListItem', o
Vposition s 1, L CYPeE mSTTeED >> len(json_parsed)
'name': 'Home', .
'item': 'https://www.producthunt.com/'}, >> type(Json_par‘sed[O])
{'et '+ 'ListItem', 3
position's 2, | >> json_parsed[0].keys()
name': Notion World', >> json_parsed[0]['aggregateRating’]

'item': 'https://www.producthunt.com/products/notion-world'}]}]

Create DataFrame from a JSON string

Step 3. Create a Pandas DataFrame from the parsed JSON object

pd.DataFrame(json_parsed)

~&

@context @type name description datePublished aggregateRating offers applicationCategory itemListElement
Notion Discover the 2022-09- {'@type': 'Offer’,
0 http://schema.org WebApplication powerful world of 26T13:34:12.815- ‘price": 0, Productivity NaN
World : 5 : y . ,
Notion with thi... 07:00 priceCurrency'...
1 http://schema.org BreadcrumbList NaN NaN NaN NaN NaN NaN

Summary: JSON string > nested dictionary or list > pd.DataFrame. But resulting
data contain values of complex data types, and further data wrangling (next time)
Is heeded, e.g., aggregateRating[0] is a dictionary itemListElement[1] is a list

All Roads Lead to Rome

* There are often more than one way to read the same input data
* Make sure resulting DataFrame has the right structure and data

* Here are common problems that can go wrong (and how to fix)

» Flipped columns & rows: fix this by switching columns and rows, i.e.,
transposing the original DataFrame df usingdf.T

»No column names: fix this by assigning column names to df.columns

»Row indexes are not 0 to N-1: fix this by using df .reset_index() to reset
indexes to default (0 to N-1)

Exercise: Read CSVY and JSON Data

1.Read the file census_data.csv in chunks of 50 rows at a time
using Pandas. Display each chunk as a separate DataFrame.

2.Copy the raw JSON string (json_text) from “Create a DataFrame
from a JSON string” section and parse it into a JSON object

1.ldentify all nested elements in the JSON object (e.g., dictionaries or lists)

2.Convert each nested element into a separate DataFrame (hint:
AggregateRating, Offer, and Listltem)

3.Get separate row Series from all the DataFrames, and combine them into
a single DataFrame (hint: use df.iterrows())

4.Reset the combined DataFrame’s indexes so that they are unique (hint:
use df.reset_index(drop=True) —we’ll learn more next session)

