Pandas Series

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

Tabular Data (in a Pandas DataFrame)

I) contlp (0,1

100 zeroth' True
1 101 0 first' False
2 102 0 'second’ False
3 103 1 'third' True
4 104 1 ‘fourth’ True

Two Pandas Data Structures

Pandas Series: a 1D labeled array that can hold any data type

(similar to values of a list but with a - and indexes)

Example of a Pandas Series

Pandas Series: a 1D labeled array that can hold any data type
(similar to values of a list but with a hame and indexes)

100 zeroth' True
1 101 ! False
2 102 'second’ False
3 103 'third' True
4 104 ‘fourth’ True

Example of a Pandas Series

Pandas Series: a 1D labeled array that can hold any data type
(similar to values of a list but with a hame and indexes)

Blid (int)flcoinflip ({0, 1})llord (str)llcurrent (bool)f

0 100 1 'zeroth' True

101 0 'first’' False

A row series

2 102 0 'second’ False
3 103 1 'third' True
4 104 1 ‘fourth’ True

Two Pandas Data Structures

Pandas DataFrame: a 2D labeled array storing tabular data, where

rows represent observations and columns represent variables

Two Pandas Data Structures

Pandas DataFrame: a 2D labeled array storing tabular data, where

rows represent observations and columns represent variables

id (int) |coinflip ({0,1}) |ord (str) |current (bool)
'zeroth'

A Pandas DataFrame

'third’
‘fourth'

Anatomy of a Pandas DataFrame

|d (int) |coinflip ({0,1}) |ord (str) |current (bool)

100 1 'zeroth' True

1 101 first' False
2 102 'second’ False
3 103 'third' True
4 104 ‘fourth’ True

A column: presents values of a variable

Anatomy of a Pandas DataFrame

l
0 100 zemﬂh' True
2 102 0 'second’ False
3 103 1 'third' True
4 104 1 ‘fourth’ True

A row: presents values of an observation

Anatomy of a Pandas DataFrame

I) contlp (0,1

100 zeroth' True
101 0 first' False
102 0 'second’ False
103 1 'third' True
104 1 'fourth’ True

Row indexes: represent typically (but not

necessarily) unigue labels of observations

Anatomy of a Pandas DataFrame

~lid (int) | coinflip ({8,1}) |ord (str) | current (bool)

0 100 1 'zeroth' True
1 101 0 first' False
2 102 0 'second’ False
3 103 1 'third' True
4 104 1 ‘fourth’ True

Column names: represent typically (but

not necessarily) unique labels of variables

Anatomy of a Pandas DataFrame

diint) contip 5,1}

100 'zeroth’ True
1 101 0 first' False
2 102 0 'second’ False
3 103 1 'third' True
4 104 1 ‘fourth’ True

Column data types: represent attribute (variable)

data type (typically homogenous but not required)

DataFrame & Row/Column Series

* Arow of a DataFrame can be represented by a Pandas Series
»name <« arow index in the DataFrame
»indexes ¢« column names in the DataFrame
»values < arow’s values in the DataFrame

* A column of a DataFrame can be represented by a Pandas Series
»name < a column name in the DataFrame
»indexes €< row indexes in the DataFrame
»values ¢ a column’s values in the DataFrame

Pandas Series

Anatomy of a Pandas Series

A Pandas Series s has name coinflip, indexes 0, 1, 2, 3, 4 and
values 1,0, 0, 1, 1. We can retrieve these components by calling

S=

S Eli[al — | coinflip’

N ale[){ —> | Index([0, 1, 2, 3, 4], dtype='int64")

A WNRPRO
-

Name: coinflip, dtype: int64 VLI — |array([1, 0, 0, 1, 1])

Create a Pandas Series

_ pd.Series(argument)

Argument alist, or a dictionary, or an array-like object
Returns a Pandas Series object

s= pd.Series([True,True,False])
display(s)

) True
1 True
2 False
d

type: bool

Create a Pandas Series

_ pd.Series(argument)

Argument alist, or a dictionary, or an array-like object
Returns a Pandas Series object

s = pd.Series(np.ones(5),dtype=np.int32)
display(s)

= |

1
2
3
4
d

From a NumPy array

R R R R R

type: int32

Create a Pandas Series

_ pd.Series(argument)

Argument alist, or a dictionary, or an array-like object
Returns a Pandas Series object

s = pd.Series({'Tom':1,'Char':2,"'Karen':3,'Lin':4,"'Jess"':5})

display(s)
Tom 1
Char 2 . ..
m ol 3 From a dictionary
Lin 4
Jess 5 dictionary keys > indexes of the Series

dtype: int64 dictionarﬁ values = values of the Series

Create a Pandas Series

Values If no index is specified
when creating a Pandas
Series, it will automatically
have a default index of 0,
1,2, ..., N, corresponding
to the first N rows, starting
from the top

pe. 1n
Data type

Create a Pandas Series (With Indexes)
_ pd.Series(arg,index=ind)

arg:. a list, a dictionary, or an array-like object

Arguments . : : :
2 ind: a list, or a 1D array-like object
Returns a Pandas Series object
s = pd.Series(np.arange(5), index=['Tom', 'Char’', 'Karen', 'Lin', 'Jess’'])
display(s)
Tom 0
Char 1 Indexes from a
Karen 2 list
Lin 3
Jess 4
dtype: int64

Create a Pandas Series (With Indexes)

_ pd.Series(arg,index=ind)

arg:. a list, a dictionary, or an array-like object

Arguments . . : :
2 ind: a list, or a 1D array-like object
Returns a Pandas Series object
s = pd.Series([None]*5, index=np.arange(5)*2)
display(s)
0 None
m 2 None Indexes from a
4 None
e None Numpy array
8 None
dtype: object

Indexing a Series (One Element)

* Get the 4™ value (or the value corresponding to the index “Jess”) in
the Pandas Series S)

S= Equivalently:

Tom) s['Jess']

Char 1 Or

Ei;en g s.loc['Jess"']
(Jess> 4 Or

dtype: 1int64 s.iloc[4]

Indexing a Series (Multiple Elements)

* Get the sub-series containing the 2" & 4" values (or the values
corresponding to “Karen” and “Jess”) in the Pandas Series s)

S= Equivalently:
Tom) s[['Char', 'Jess"]]
Char 1 Or
‘ / s.loc[['Char', "Jess']]
Lin 3

(Jess> 4 Or
dtype: 1int64 s.iloc[[1,4]]

Modifying a Series (One Element)

Before:

S=

® NaN
2 NaN
4 NaN
6 NaN
8 NaN
dtype: float64

s[4] =1

B

0 NaN
2 NaN
4 1.0
6 NaN
38 NaN
dtype: float64

Modifying a Series (Multiple Elements)

Before: s[['Tom', 'Karen']] = [0,3] After:

S= S=

Tom NaN Tom 0.0
Char NaN ‘ Char NaN
Karen NaN Karen 3.0
Lin NaN Lin NaN
Jess NaN Jess NaN
dtype: float64 dtype: floato64

Unique Values of a Series

_ Series.unique()

Argument N/A

Returns a NumPy array containing unique values in Series
S=
0 NaN s.unique()
1 1.000
2 2.000 w
NaN
Z 1_030 array([nan, 1., 2.], dtype=float32)
dtype: float32

Frequencies Counts of a Series

_ Series.value counts()

Argument N/A
Returns a Pandas Series object

0 NaN s.value counts()
1 1.000 w
2 2.000 Index Valu

3 NaN 000
4 1.000 (2.000 I
d

type: float32 Name: count, dtype: int64

Boolean Indexing & Filtering

 Get the sub-series with only values that are even numbersin s
(Hint: recall Boolean indexing of an NumPy array, this is similar)

Equivalently:

mask = (s%2==0)
s[mask]
Ordoitinone step

s[s%2==0]

dtype: 1nt64

Boolean Indexing & Filtering

* Get the sub-series with only values that are either 2 or 4 in s (Hint:
use Series.isin())

S= Equivalently:

Tom 0) (12,475
mask = s.isin([2,4

Char 1 [mask]

Or do all in one step

s[s.isin([2,4])]

dtype: 1into64

Convert a Series Into a Dictionary

_ Series.to_dict()

Argument N/A

Returns a dictionary where the Series index becomes the
dictionary keys, and the Series values become the

dictionary values

Tom 0

Char 1 s.to_dict()

Karen 2

Lin 3 - ..

Jess 4

dtype: int64 |({'Tom': @, 'Char': 1, 'Karen': 2, 'Lin': 3, 'Jess': 4}

Convert a Series Into a List

_ Series.to_list()

Argument N/A

Returns a list containing the Series values as elements
S= | Tom 0

Char 1 s.to list()

Karen 2

Lin 3 w

Jess 4

dtype: int64 [0, 1, 2, 3, 4]

Exercise: Working With a Pandas Series

1. Generate a Pandas Series named coin with 100 elements. Each
element should be randomly drawn from a Bernoulli distribution with
a mean of 0.8 (values are either 0 or 1). Set the index of the Series to
integers from 1 to 100

2. Replace the elements at the 5th, 50th, 65th, and 90th positions
with NaN

3. ldentify and list all unique values in the Series, including NaN
4. Countthe distinct values in the Series, including NaN

5. Create a new Series that retains only the 1 values and NaN from the
original Series (excluding 0)

6. Convertthe new Series into a dictionary

Broadcasting

s[[5,50,65,90]] = np.nan
* |s this syntax correct? Why?

L = [@:112:314]
L[2:3]=np.nan
* |s this syntax correct? Why?

Distinct Types of Missing Values
TREL, (N, AEEGLELED). and MENIEL are distinct kinds of

missing values, while ' ' (empty string) is not a missing value

* NOT equivalent despite pd.isna() evaluating to True for all

* Note pd.isna() different from np.isnan() which only works on
numeric types (e.g., np.isnan(None) returns an error)

Detect Missing Values in a Series

_ pd.isna(argument)

Argument An array-like object (Series, NumPy array, list, etc)

Returns a Boolean Series of the same size as argument: True if
the value in the original Series is missing (NaN
[numerical] or None [string]), and False otherwise

_____ seriesidsnaQ)

Argument N/A

Returns a Boolean Series of the same size as Series: True if the
value in the original Series is missing (NaN [numerical]
or None [string]), and False otherwise

Detect Missing Values in a Series

_ pd.notna(argument)

Argument An array-like object (Series, NumPy array, list, etc)

Returns a Boolean Series of the same size as argument: True if

the value in the original Series is NOT missing (NaN
[numerical] or None [string]), and False otherwise

_ Series.notna()

Argument a Pandas Series object

Returns a Boolean Series of the same size as Series: True if the
value in the original Series is NOT missing (NaN

[numerical] or None [string]), and False otherwise
D

Drop Missing Values in a Series

_ Series.dropna()

Argument N/A

Returns A new Series equal to the original Series with missing
values dropped

_ Series.dropna(inplace=True)

Argument N/A

Returns None [Series is directly modified, with missing values
dropped without returning a new object]

Fill Missing Values in a Series

_ Series.fillna(argument)

Argument avalue of the same data type as the original Series

Returns A new Series equal to the original Series with missing
values filled by the parameter passed as the argument

_ Series.fillna(argument,inplace=True)

Argument avalue of the same type as the original Series

Returns None [Series is directly modified, with missing values
filled in place without returning a new object]

Functions vs. inplace Methods

Sometimes, a function and a method of the same name carry out
the same operation (e.g., isna() and notna())

* The function return the modified object as a new object, and the
original object remains unchanged

df = pd.func(df)

* The method with inplace=False (default) same as the function
df = df.func(inplace=False)

* The method with inplace=True (passed as argument) directly
modify the original object

df.func(inplace=True)

Inplace Method to Fill Missing Data

s.fillna(@,inplace=True)

Before:

S=

Tom 1.0
Char NaN
Karen 3.0
Lin NaN
Jess NaN

dtype: float64

o

After:

S=

Tom 1.0
Char 0.0
Karen 3.0
Lin 0.0
Jess 0.0

dtype: floato64

Inplace Method to Fill Missing Data

Before: s.fillna('nn',inplace=True) After:

S= S=

Tom a Tom a
Char None Char nn
Karen C ‘ Karen C
Lin None Lin nn
Jess None Jess nn
dtype: object dtype: object

Exercise: Working With Missing Values

1. Generate a Pandas Series with 100 numbers sampled from a
standard normal distribution N(0, 1)

2. Setthe first 10 numbers in the Series to np.nan. Set the next 10
numbers to None

3. Create a new Series that contains only the non-missing values
from the original Series

4. Create a new Series where all missing values in the original
Series are replaced with the sample mean

5. Replace all missing values in the original Series with 0 using an
iInplace method

