
12/27/25 1

Pandas Series
1405 Instructor: Ruiqing (Sam) Cao

Required Python Libraries for Today

Core
• NumPy, Pandas

Visualization
• Matplotlib, Seaborn

Statistical learning
• scikit-learn, SciPy, statsmodels

import numpy as np
import pandas as pd

import sklearn
import scipy
import statsmodel as sm

from matplotlib import pyplot as plt
import seaborn as sns

NumPy & Pandas Printing Format

• NumPy

• Pandas
pd.options.display.float_format = '{:.3f}'.format

np.set_printoptions(precision=3,suppress=True)

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

Tabular Data (in a Pandas DataFrame)

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

Two Pandas Data Structures

Pandas Series: a 1D labeled array that can hold any data type
(similar to values of a list but with a name and indexes)

Example of a Pandas Series

Pandas Series: a 1D labeled array that can hold any data type
(similar to values of a list but with a name and indexes)

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

A column series

Example of a Pandas Series

Pandas Series: a 1D labeled array that can hold any data type
(similar to values of a list but with a name and indexes)

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

A row series

Two Pandas Data Structures

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

Two Pandas Data Structures

Pandas DataFrame: a 2D labeled array storing tabular data, where
rows represent observations and columns represent variables

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

A Pandas DataFrame

Anatomy of a Pandas DataFrame

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

A column: presents values of a variable

Anatomy of a Pandas DataFrame

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True

A row: presents values of an observation

Anatomy of a Pandas DataFrame

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True
Row indexes: represent typically (but not
necessarily) unique labels of observations

Anatomy of a Pandas DataFrame

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True
Column names: represent typically (but
not necessarily) unique labels of variables

Anatomy of a Pandas DataFrame

id (int) coinflip ({0,1}) ord (str) current (bool)
0 100 1 'zeroth' True
1 101 0 'first' False
2 102 0 'second' False
3 103 1 'third' True
4 104 1 'fourth' True
Column data types: represent attribute (variable)
data type (typically homogenous but not required)

DataFrame & Row/Column Series

• A row of a DataFrame can be represented by a Pandas Series
Øname ← a row index in the DataFrame
Øindexes ← column names in the DataFrame
Øvalues ← a row’s values in the DataFrame

• A column of a DataFrame can be represented by a Pandas Series
Øname ← a column name in the DataFrame
Øindexes ← row indexes in the DataFrame
Øvalues ← a column’s values in the DataFrame

12/27/25 16

Pandas Series

Anatomy of a Pandas Series

A Pandas Series s has name coinflip, indexes 0, 1, 2, 3, 4 and
values 1, 0, 0, 1, 1. We can retrieve these components by calling

s.name

s.index

s.values

s=

Create a Pandas Series

pd.Series(argument)
Argument a list, or a dictionary, or an array-like object
Returns a Pandas Series object

s= pd.Series([True,True,False])
display(s)

From a listoutput

Create a Pandas Series

pd.Series(argument)
Argument a list, or a dictionary, or an array-like object
Returns a Pandas Series object

s = pd.Series(np.ones(5),dtype=np.int32)
display(s)

From a NumPy arrayoutput

Create a Pandas Series

pd.Series(argument)
Argument a list, or a dictionary, or an array-like object
Returns a Pandas Series object

s = pd.Series({'Tom':1,'Char':2,'Karen':3,'Lin':4,'Jess':5})
display(s)

From a dictionaryoutput

dictionary keys → indexes of the Series
dictionary values → values of the Series

Create a Pandas Series

ValuesIndex If no index is specified
when creating a Pandas
Series, it will automatically
have a default index of 0,
1, 2, ..., N, corresponding
to the first N rows, starting
from the topData type

Create a Pandas Series (With Indexes)

pd.Series(arg,index=ind)

Arguments arg: a list, a dictionary, or an array-like object
ind: a list, or a 1D array-like object

Returns a Pandas Series object
s = pd.Series(np.arange(5), index=['Tom','Char','Karen','Lin','Jess'])
display(s)

Indexes from a
list

output

Create a Pandas Series (With Indexes)

pd.Series(arg,index=ind)

Arguments arg: a list, a dictionary, or an array-like object
ind: a list, or a 1D array-like object

Returns a Pandas Series object
s = pd.Series([None]*5, index=np.arange(5)*2)
display(s)

Indexes from a
Numpy array

output

Indexing a Series (One Element)

• Get the 4th value (or the value corresponding to the index “Jess”) in
the Pandas Series s)

s['Jess']

s= Equivalently:

s.loc['Jess']

s.iloc[4]

Or

Or

Indexing a Series (Multiple Elements)

• Get the sub-series containing the 2nd & 4th values (or the values
corresponding to “Karen” and “Jess”) in the Pandas Series s)

s[['Char','Jess']]

s= Equivalently:

s.loc[['Char','Jess']]

s.iloc[[1,4]]

Or

Or

Modifying a Series (One Element)

s[4] = 1Before: After:

s= s=

Modifying a Series (Multiple Elements)

s[['Tom','Karen']] = [0,3]Before: After:
s= s=

Unique Values of a Series

Series.unique()
Argument N/A
Returns a NumPy array containing unique values in Series

s.unique()
s=

output

Frequencies Counts of a Series

Series.value_counts()
Argument N/A
Returns a Pandas Series object

s.value_counts()
s=

output

ValuesIndex

Boolean Indexing & Filtering

• Get the sub-series with only values that are even numbers in s
(Hint: recall Boolean indexing of an NumPy array, this is similar)

s=

mask = (s%2==0)
s[mask]

Equivalently:

s[s%2==0]

Or do it in one step

Boolean Indexing & Filtering

• Get the sub-series with only values that are either 2 or 4 in s (Hint:
use Series.isin())

s=

mask = s.isin([2,4])
s[mask]

Equivalently:

s[s.isin([2,4])]

Or do all in one step

Convert a Series Into a Dictionary

Series.to_dict()
Argument N/A
Returns a dictionary where the Series index becomes the

dictionary keys, and the Series values become the
dictionary values

s=
s.to_dict()

output

Convert a Series Into a List

Series.to_list()
Argument N/A
Returns a list containing the Series values as elements

s=
s.to_list()

output

Exercise: Working With a Pandas Series
1. Generate a Pandas Series named coin with 100 elements. Each

element should be randomly drawn from a Bernoulli distribution with
a mean of 0.8 (values are either 0 or 1). Set the index of the Series to
integers from 1 to 100

2. Replace the elements at the 5th, 50th, 65th, and 90th positions
with NaN

3. Identify and list all unique values in the Series, including NaN
4. Count the distinct values in the Series, including NaN
5. Create a new Series that retains only the 1 values and NaN from the

original Series (excluding 0)
6. Convert the new Series into a dictionary

Broadcasting

s[[5,50,65,90]] = np.nan
• Is this syntax correct? Why?

L = [0,1,2,3,4]
L[2:3]=np.nan
• Is this syntax correct? Why?

Distinct Types of Missing Values

• np.nan, None, float('nan'), and math.nan are distinct kinds of
missing values, while '' (empty string) is not a missing value

• NOT equivalent despite pd.isna() evaluating to True for all

• Note pd.isna() different from np.isnan() which only works on
numeric types (e.g., np.isnan(None) returns an error)

Detect Missing Values in a Series
pd.isna(argument)

Argument An array-like object (Series, NumPy array, list, etc)
Returns a Boolean Series of the same size as argument: True if

the value in the original Series is missing (NaN
[numerical] or None [string]), and False otherwise
Series.isna()

Argument N/A
Returns a Boolean Series of the same size as Series: True if the

value in the original Series is missing (NaN [numerical]
or None [string]), and False otherwise

Detect Missing Values in a Series

pd.notna(argument)
Argument An array-like object (Series, NumPy array, list, etc)
Returns a Boolean Series of the same size as argument: True if

the value in the original Series is NOT missing (NaN
[numerical] or None [string]), and False otherwise
Series.notna()

Argument a Pandas Series object
Returns a Boolean Series of the same size as Series: True if the

value in the original Series is NOT missing (NaN
[numerical] or None [string]), and False otherwise

Drop Missing Values in a Series

Series.dropna()
Argument N/A
Returns A new Series equal to the original Series with missing

values dropped

Series.dropna(inplace=True)
Argument N/A
Returns None [Series is directly modified, with missing values

dropped without returning a new object]

Fill Missing Values in a Series

Series.fillna(argument)
Argument a value of the same data type as the original Series
Returns A new Series equal to the original Series with missing

values filled by the parameter passed as the argument

Series.fillna(argument,inplace=True)
Argument a value of the same type as the original Series
Returns None [Series is directly modified, with missing values

filled in place without returning a new object]

Functions vs. inplace Methods

Sometimes, a function and a method of the same name carry out
the same operation (e.g., isna() and notna())

• The function return the modified object as a new object, and the
original object remains unchanged

df = pd.func(df)
• The method with inplace=False (default) same as the function

df = df.func(inplace=False)
• The method with inplace=True (passed as argument) directly

modify the original object
df.func(inplace=True)

Inplace Method to Fill Missing Data

Before: After:

s= s=

s.fillna(0,inplace=True)

Inplace Method to Fill Missing Data

s.fillna('nn',inplace=True)Before: After:

s= s=

Exercise: Working With Missing Values
1. Generate a Pandas Series with 100 numbers sampled from a

standard normal distribution N(0,1)
2. Set the first 10 numbers in the Series to np.nan. Set the next 10

numbers toNone
3. Create a new Series that contains only the non-missing values

from the original Series
4. Create a new Series where all missing values in the original

Series are replaced with the sample mean
5. Replace all missing values in the original Series with 0 using an

inplace method

