Boolean Indexing

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

Filter & Modify Array by Condition

* Boolean Indexing: A powerful technique used to filter or
modify existing arrays based on certain conditions

* Filter an array: select only observations that satisfy certain
conditions

»e.g., select subsample of companies with positive sales growth

* Modify an array: change the value of a variable for the
observations that satisfy certain conditions

»e.g., replace all negative values in a data set with zeros

Boolean Indexing

* Create a conditional Boolean array by

> Applying a conditional statement on the original array

b = (conditional expression on a)

Example: Create a conditional array based on whether each
element of the original array is an odd integer (not a multiple of 2)

a=np.array([1,2,3,4,5,6])—array([1, 2, 3, 4, 5, 6])

as2==1— | array([True, False, True, False, True, False])

Boolean Indexing

* Obtain an array containing the indexes that correspond to
the True values in a conditional Boolean array b

np.where(b)

Example: Get the indexes of the original array the correspond to odd
Integers (not a multiple of 2)

a=np.array([1,2,3,4,5,6])—array([1, 2, 3, 4,5, 6])

np.where(a%2==1) — | array([0, 2, 4])

Filter an Array Using Boolean Indexes

* Filter the original array using a conditional Boolean array:
»Original array a and conditional Boolean array b
»Select a’s elements where b is True:

Example: Create a new array containing only odd integers (not
multiples of 2) in the original array

b = (a%2==1) — array([True, False, True, False, True, False])

al = a[b]| — array([1, 3, 5])

Modify an Array Using Boolean Indexes

np.where()

* b is a conditional Boolean array, v1 are values for the condition
True, and vO are values for the condition False

np.where(b,vl,v0)

...returns a new array where elements are drawn from vl where b is
True and from vO where b is False

* vl and vO@ can be arrays or scalars

» Arrays: Must have the same shape as b

»Scalars: Automatically turns into an array with the same scalar value
copied into an array of the same shape as b (aka Broadcasting)

Modify an Array Using Boolean Indexes

* Modify the original array using a conditional Boolean array: change
the original values in the array a into @ wherever the conditional

array b is True, and keep other values the same

np.where(b,0,a)

Example: Create a new array that replaces odd integers in the
original array with -99, and keeps other elements the same

b = (a%2==1) — |array([True, False, True, False, True, False])

a2 = np.where(b,-99,a) — |array([-99, 2, -99, 4, -99, 6])

Modify an Array Using Boolean Indexes

np.select() -genarlized version of np.where()

- [b ©,b 1,..]isalistof conditional Boolean arrays,[v_0O,v_1,..] are
values for each conditionb_0,v_1,..being True

np.where([b 0,b 1,..],[v_O,v 1,..],default=0)

...returns a new array where elements are equalto v_kwhereb kis
True, and equal to default if none of the conditions are met

* v_k can be an array or a scalar

» Arrays: Must have the same shapeasb_k
»Scalars: Automatically turns into an array with the same scalar value copied into
an array of the same shape as b_k (aka Broadcasting)

Example: Censoring Data

 Left censoring: Replace all values below a threshold t1 by
that threshold (i.e., any value below t1 becomes t1)

np.where(a<tl, tl, a) ornp.where(a>=tl, a, tl)

* Right censoring: Replace all values above a threshold tr by
that threshold (i.e., any value below tr becomes tr)

np.where(a>tr, tr, a)ornp.where(a<=tr, a, tr)

Example: Remove Missing Values

* Generate Boolean masks for missing values with np.isnan()
b = np.isnan(a)

* Remove missing values by filtering on the original array
a[~b]
~: bitwise NOT operator that flips True > False and False » True

Example: Fill Missing Values

* Generate Boolean masks for missing values with np.isnan()
b = np.isnan(a)

* Fill missing values with zeros
np.where(b,0,a)

* Fill missing values with the sample average
avg_a= np.nanmean(a)
np.where(b,avg a,a)

Missing Values & Data Cleaning

* Most real-world datasets contain missing values, but
performing data analysis often requires a full dataset
without missing values

* Here are two common approaches to handle missing data
» Remove any data points where a variable has a missing value

» Fill missing values using a pre-defined rule, such as replacing
with zero, the mean, or the median of the variable across non-
missing data points

Exercise: Handle Missing & Outlier Values

* Create and store some data for a single variable in the array arr:

arr = np.random.standard normal(100)

mask = np.random.choice([True,False], 100, p=[0.05,0.95])
arr = np.where(mask,arr*1000,arr)

arr = np.where(np.abs(arr)>50,np.nan,arr)

Compute the mean, 5™ percentile, and 95" percentile of the dataset
Remove values greater than 95 percentile

Remove values smaller than the 5" percentile

Replace missing values with the sample mean

Jgs e =

Plot the frequency histogram of the cleaned dataset

