Vectorization

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

Vectorization & Advanced Techniques

* Technically, any operation you can perform on a list can also
be done on a NumPy array by iterating through its elements

* However, loops are inefficient for large data sets, and so this
IS where matrix algebra and vectorized operations can help

* NumPy provides built-in support for vectorized operations,
making computations faster and the code more concise

Apply Functions Element-Wise to Array

* Often, you need to apply more complicated functions
to each element of on a NumPy array

* Two options:

»Use built-in functions: universal functions (ufuncs)
»Write your own customized function and vectorize it

Universal Functions (ufuncs)

* Built-in functions that perform element-wise operations on a
NumPy array without explicitly looping through an entire array

» A simple example: np.sqgrt(a) returns a new array of the same
size as a that contains the square root of each element of a

* ufuncs are implemented in C (programming language)

» Optimized for speed (e.g., avoids Python loops) and one reason NumPy is
faster than plain-vanilla Python

Commonly Used Universal Functions

ufunc Description Python Implementation

Square root: x > sqrt(x) np.sqrt(a)
Exponential: x > exp(x) np.exp(a)
Natural log: x > ln(x) np.log(a)

Largest integer no greater than: x> floor(x) np.floor(a)

Smallest integer no less than: x>ceil(x) np.ceil(a)

Array maximum: (x1,..,xn)-> max{x1,...,xn} np.fmax(al,a2,..,an)
Array minimum: (x1,..,xn)-> max{x1,...,xn} np.fmin(al,a2,..,an)
Check for missing value np.isnan(a)

Check for membership np.isin(a,master)

Apply Functions Element-Wise to Array

* Often, you need to apply more complicated functions
to each element of on a NumPy array

* Two options:

»Use built-in functions: universal functions (ufuncs)

»\Write your own customized function and vectorize it

Vectorize a Function & Apply to Array

* iIoVIIade Ik W4X@] can apply any function element-wise to an
array: it generalizes ufuncs but without speed improvements

Step 1: Define a function def £(x):

return result
Step 2: Vectorize the function

vec_f = np.vectorize(f)

Step 3: Apply the vectorized function to an array

result = vec f(a)
D

