NumPy Arrays

1405 Instructor: Ruiging (Sam) Cao

Required Python Libraries for Today

Core import numpy as np
« NumPy, Pandas 1mport pandas as pd

Visualization from matplotlib import pyplot as plt
* Matplotlib, Seaborn import seaborn as sns

Statistical learning import sklearn

« scikit-learn, SciPy, statsmodels 1mport scipy
import statsmodel as sm

NumPy & Pandas Printing Format

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

* NumPy
np.set printoptions(precision=3,suppress=True)

* Pandas
pd.options.display.float format = '{:.3f}'.format

NumPy Array

* ANumPy array is a very useful data structure for storing large,
multi-dimensional, homogenous data for efficient numerical
computations (requires importing the numpy library)

Key features:

»Homogeneity: (1) values are of the same scalar type and often numeric
(2) rectangular so all elements have the exact same size

»Multidimensional: 1D, 2D, or higher-dimension (1D & 1D most
common)

» Efficiency: faster than lists for numeric computations, and supports
built-in mathematic and statistics functions

NumPy Array Examples

| 'abc',12] nota NumPy array > "abc' and 12 are different data types

[[1,2],[3]] notaNumPyarray~> [1,2] and [3] have different sizes

[[[1,2],[3,4]],[[5,6],[7,8]]]isaNumPy array of shape (2, 2, 2)

6.1, 6.5, 1.0, 1.5]isa NumPy array of shape (4,) of float type

2D Array As a Sequence of 1D Arrays

* We can think of a 2D array arr as either
» A sequence of 1D arrays as rows (of the same length), or
» A sequence of 1D arrays as columns (of the same length)

 Forarr[i,j], someimportant concepts and their relationships
* 1isarowindex: axis=0, and number of rows equals arr.shape[0]
* jisacolumnindex: axis=1 and number of columns equals arr.shape[1]

_ Rows (axis=0) Columns (axis=1)

Role Represents an Observation Represents a Variable
Access array|[i, :] (row1i) array|[:,3j] (column j)
Size array.shape[0] array.shape[1]

Common Ways to Initialize an Array

* Directlyrom a list: np.array([0.1,0.2,0.3,0.4],dtype=np.float64)
e /eros: np.zeros(5, dtype=np.float64)— array([0.,0.,0.,0.0.])
* Ones: np.ones(5, dtype=np.float64)—>|array([1.,1.,1.,1.,1.])
* Uninitialized values (empties)

np.empty([2,2], dtype=np.int64) —| An arbitrary 2x2 ndarray

* Sequence with specified start, stop, & step

np.arange(10) np.arange(0.1, 1.05, 0.05)
array([0,1,2,3,4,5,6, 7,8, 9]) array([0.1,0.15,0.2,0.25,0.3, 0.35,0.4, 0.45,0.51])

Common NumPy Data Types (Numeric)

np.int8 8-bit integer -128 to 127

np.int16 16-bit integer -32768 to 32767

np.int32 32-bit integer -2"31to 2731-1 (~9 digits)
np.int64 64-bit integer -2763 to 2763-1 (~19 digits)
np.float16 Half-precision floating point 3-4 decimal digits
np.float32 Single-precision floating point 7 decimal digits

np.float64 double-precision floating point 15-16 decimal digits

np.float128 Extended-precision floating point 33 decimal digits

np.bool_ Boolean type {True, False} Note trailing
np.string_ Fixed-length ASCII string type underscores!

NumPy Data Type Casting

* Automatically conversion of array elements of different types:
bool_ - int* = float™ > string_

For example:
np.array([1, ‘two',3.0]) — | array(['1), 'two', '3.0'], dtype='€U32'§§

nicode
String of

np.array([100,10.0,False]) — | np.array([1,two",3.0]) length 32

NumPy Data Type Casting

* Explicit type casting, two approaches arr=np.array(|0, 1, 2, 3, 4]):

- arr.astype(np.floaté4) |castthe arrayinto float type
* np.float(arr) and give the same result

— array([0., 1., 2., 3.,4.])

* Caution: casting from coarse to precise is okay (e.g., int to float),
but try to avoid casting from precise to coarse, for example
* Allowed but loses precision: np.1int64(100.9) | Keeps integer part only
 Allowed but messing up completely: np.intl16(1000000) |Outofrange
* Not allowed and returns an error: np.float32(‘hello world")

Representing Missing Values

A numeric missing value is represented by [flsd¥ElY] (“not a number”)

* Note: This does not apply to strings, where missing values are
simply denoted by Nonelype (None) or empty string ("")

* Comparison logics don’t work on the missing value

* Any comparison between a non-missing value X and np . nan results in
False: e.g., np.nan<0 and np.nan>=0 both evaluate to False

* In general, final data should not contain np.nan; clean the data to
remove or fill missing values before proceeding with data analysis

Exercise: Create Arrays & Cast Types

1. Create a NumPy array of integers from 0 to 999 with dtype=
np.1intl16, then convertitto dtype=np.float32

2. Create a NumPy array of 1000 zeros with dtype=np.floatls,
then convert it to dtype=np.bool

3. Generate a 2D NumPy array with 100 rows and 3 columns:
e Column 0: row numbers 0-99
e Column 1: Continuous values drawn from a uniform distribution between 0 and 1

* Column 2: Binary values (0 or 1) drawn from an uneven coin flip where heads (1)
has a probability of 0.6, and tails (0) has a probability of 0.4

» Hints: see np.random.rand() and np.random. choice() examples in Notebook

Using Generate Al to Generate Code

Prompt
* Same text as the problem instructions. Clear and step-by-step
instructions are often enough to get Copilot to generate good code

Model
* The model used to generate the code here is Claude 3.5 Sonnet

Generate a 2D NumPy array with 100 rows and 3 columns:

Column 0: row numbers 0-99

Column 1: Continuous values drawn from a uniform distribution between 0 and 1

Column 2: Binary values (0 or 1) drawn from an uneven coin flip where heads (1) has a probability of 0.6, and tails (0) has a
probability of 0.4

week3_notebook_numpy.ipynb - Cell 1 Current file o

@ O 9 Claude 3.5 Sonnet (Preview) v| B v

Using Generate Al to Generate Code

& GitHub Copilot

Copilot Output

1. Import required libraries (numpy)

2. Create array of row numbers (0-99)

3. Generate uniform random numbers between 0-1
4. Generate binary values with 0.6 probability for 1

* Starts with a description or s corine 20310
plan for generating the code

* Then provides the Python code
* Note: you may get a different

response or code, but they
should work

1. Open terminal (Cmd +)
2. Run: python numpy_array.py

Using Generate Al to Generate Code

Ask for code adjustments _

week3_notebook_numpy.ipynb « Cell 1:1-6

& GitHub Copilot

* “Please create the array using

Steps:

th e n a m e a r r.” 1. Create array of indices (0-99)

2. Generate uniform random values
3. Generate binary values with p(1)=0.6
4. Stack arrays into single 2D array named 'arr'

5. Verify output shape and content

* Generates Python code again
to meet the new requirement

indices = np.arange(100)
uniform_vals = np.random.uniform(@, 1, 100)
binary_vals = np.random.choice([0, 1], size=100, p=[0.4, 0.6])

arr = np.column_stack((indices, uniform_vals, binary_vals))

print("Array shape:", arr.shape)
print("\nFirst 5 rows:")
print(arr[:5])

Using Generate Al to Generate Code

9 ruigingcao

Please create the array using the name arr.

Select generated code partially

week3_notebook_numpy.ipynb « Cell 1:1-6

& GitHub Copilot

* Sometimesyou only need part
(not all) of the generated code e etin 09

2. Generate uniform random values

3. Generate binary values with p(1)=0.6

4. Stack arrays into single 2D array named 'arr'
5. Verify output shape and content

* Understand the meaning of the
code, and select the part of the , ,
indices = np.arange(100)
code that does what you need SR e R e)

arr = np.column_stack((indices, uniform_vals, binary_vals))

print("Array shape:", arr.shape)

* Forexample, no need to print brine(nEsast 5 ramsi)

print(arr[:5])

the first 5 rows of the array o oo F -

Indexing a Numpy Array

* Recall that 1ist is a Python built-in type: a NumPy array is very
similar to a 1ist, but has more capabilities and computes faster

* Recall that indexes start at 0: this applies to all array-like data
objects, including NumPy arrays

»Index of a 1D array a: selects the element located at n (in a)

»>Index of a 2D array b: (YT or EJEALN] selects the element

located at row m and column n (in b)

Slicing a NumPy Array

General syntax: array[start:end:step] (similarto 1ist)

Slice the 1D array a:

* Select elements from index n to m:
* Select elements from index n to the end:

* Select the first n elements (from @ to n-1):

Slice the 2D array b:

* Selectrowmas a 1D array:
* Select column n as a 1D array:

Size of a

NumPy Array

* The ndarray.shape attribute returns the dimension of an array as a
tuple. Suppose ais a 1D array of length 20, and b is a 2D array with 4
rows and 5 columns

a.shape —(20,)
b.shape — (4, })

axis Ol is

* Alternatively, you can use the built-in 1en () function to return the
number of elements along the first dimension (axis 0) of an object

len(a) —

20

len(b) —

4

Sorting a Numpy Array

The np.sort() function can be used to sort arrays

* Sort a 2D array b on its values in column j (note: np.lexsort()
takes a list of columns to sort on from least to most important)

* Sorta 1D array a:

np.lexsort([b[:,7]])

Note: np.sort() always sorts numbers in ascending order; To reverse the
order, simply apply slicing after sorting: e.g., np.sorted(a)[::-1]

Unique Values & Frequencies Counts

* Avery common way to explore a particular variable in a data set is
to look at its range (i.e., unique values that it can possibly take)

np.unique(a)

...returns the unique values in the 1D array a

* Relatedly, we may also want to know the frequency of each value

np.unique(a, return_counts=True)

...returns unique values and their frequency counts in the 1D array a

Summary Statistics of Data in 2D Array

A 2D NumPy array b stores tabular data, with rows as observations and
columns as variables. To compute summary statistics for each variable,

aggregate the array along rows (axis=0) using aggregation functions like
mean, standard deviation, median, max, or min

Statistic Aggregation Function Robust to Missing Values

Mean
StDev
Median
Maximum
Minimum

Sum

np.mean(b,axis=0)
np.std(b,axis=0)
np.median(b,axis=0)
np.max(b,axis=0)
np.min(b,axis=0)

np.sum(b,axis=0)

Problem: returns np.nan if there is even one missing value in a variable
D

Summary Statistics of Data in 2D Array

A 2D NumPy array b stores tabular data, with rows as observations and
columns as variables. To compute summary statistics for each variable,
aggregate the array along rows (axis=0) using aggregation functions like
mean, standard deviation, median, max, or min

m Aggregation Function Robust to Missing Values

Mean np.mean(b,axis=0) np.nanmean(b,axis=0)
StDev np.std(b,axis=0) np.nanstd(b,axis=0)
Median np.median(b,axis=0) np.nanmedian(b,axis=0)

Maximum np.max(b,axis=0) np.nanmax(b,axis=0)

Minimum np.min(b,axis=0) np.nanmin(b,axis=0)
Sum np.sum(b,axis=0)
Problem: returns np.nan if there is even one missing value in a variable

np.nansum(b,axis=0)

Plot Frequency Histogram for a Variable

* Import the visualization library first

from matplotlib import pyplot as plt

* The underlying NumPy function np.histogram() generates
frequency histograms, but for plotting, it does not need to be
directly called. Instead

plt.hist(array[:,7j])

plt.show()
...plots the frequency histogram of the variable in array’s column j

Exercise: NumPy Array Basic Operations

1. Create two 2D NumPy arrays X1 and X2 independently using the
previous exercise with 100 rows and 3 columns (column 0: 0-99;
column 1: Uniform[0,1], column 2: Bernoulli(0.6))

2. Compute the difference between X1 and X2, square each element of
the result, and store the new array in Y
» Hint: matrix operations work on NumPy arrays (though they don’t work on lists)

Sort rows of Y on the values of column 1 (hint: use np. Lexsort())
Compute the unique value counts for Y’s column 2
Slice rows 50-99 of columns 1 and 2 from Y into a new array Y2

For each column of Y2, compute the mean, median, and standard
deviation, and plot the frequency histograms

or Bl s e

