
12/27/25 1

NumPy Arrays
1405 Instructor: Ruiqing (Sam) Cao

Required Python Libraries for Today

Core
• NumPy, Pandas

Visualization
• Matplotlib, Seaborn

Statistical learning
• scikit-learn, SciPy, statsmodels

import numpy as np
import pandas as pd

import sklearn
import scipy
import statsmodel as sm

from matplotlib import pyplot as plt
import seaborn as sns

NumPy & Pandas Printing Format

• NumPy

• Pandas
pd.options.display.float_format = '{:.3f}'.format

np.set_printoptions(precision=3,suppress=True)

It’s better to print only the first few decimal digits of large real
numbers. Set the print options to keep 3 decimal digits and supress
scientific notation (for NumPy arrays and Pandas DataFrames):

NumPy Array

• A NumPy array is a very useful data structure for storing large,
multi-dimensional, homogenous data for efficient numerical
computations (requires importing the numpy library)

Key features:
ØHomogeneity: (1) values are of the same scalar type and often numeric

(2) rectangular so all elements have the exact same size
ØMultidimensional: 1D, 2D, or higher-dimension (1D & 1D most

common)
ØEfficiency: faster than lists for numeric computations, and supports

built-in mathematic and statistics functions

NumPy Array Examples

['abc',12] not a NumPy array → 'abc' and 12 are different data types

[[1,2],[3]] not a NumPy array → [1,2] and [3] have different sizes

[[[1,2],[3,4]],[[5,6],[7,8]]] is a NumPy array of shape (2, 2, 2)

[0.1, 0.5, 1.0, 1.5] is a NumPy array of shape (4,) of float type

2D Array As a Sequence of 1D Arrays

• We can think of a 2D array arr as either
ØA sequence of 1D arrays as rows (of the same length), or
ØA sequence of 1D arrays as columns (of the same length)

• For arr[i,j], some important concepts and their relationships
• i is a row index: axis=0, and number of rows equals arr.shape[0]
• j is a column index: axis=1 and number of columns equals arr.shape[1]

Rows (axis=0) Columns (axis=1)
Role Represents an Observation Represents a Variable
Access array[i,:] (row i) array[:,j] (column j)
Size array.shape[0] array.shape[1]

Common Ways to Initialize an Array

• Directly rom a list: np.array([0.1,0.2,0.3,0.4],dtype=np.float64)
• Zeros: np.zeros(5, dtype=np.float64)
• Ones: np.ones(5, dtype=np.float64)
• Uninitialized values (empties)
np.empty([2,2], dtype=np.int64)

• Sequence with specified start, stop, & step
np.arange(10) np.arange(0.1, 1.05, 0.05)

array([0., 0., 0., 0., 0.])

array([1., 1., 1., 1., 1.])

An arbitrary 2x2 ndarray

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) array([0.1 , 0.15, 0.2 , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5])

Common NumPy Data Types (Numeric)

Data type Type description Range (int/bool) or Precision (float)
np.int8 8-bit integer -128 to 127
np.int16 16-bit integer -32768 to 32767
np.int32 32-bit integer -2^31 to 2^31-1 (~9 digits)
np.int64 64-bit integer -2^63 to 2^63-1 (~19 digits)
np.float16 Half-precision floating point 3-4 decimal digits
np.float32 Single-precision floating point 7 decimal digits
np.float64 double-precision floating point 15-16 decimal digits
np.float128 Extended-precision floating point 33 decimal digits
np.bool_ Boolean type {True, False}
np.string_ Fixed-length ASCII string type

Note trailing
underscores!

NumPy Data Type Casting

• Automatically conversion of array elements of different types:
bool_ → int* → float* → string_

For example:
np.array([1,'two',3.0])

np.array([100,10.0,False])

array(['1', 'two', '3.0'], dtype='<U32')

np.array([1,'two',3.0])

Unicode
string of
length 32

NumPy Data Type Casting

• Explicit type casting, two approaches arr=np.array([0, 1, 2, 3, 4]):
• arr.astype(np.float64)
• np.float(arr)

• Caution: casting from coarse to precise is okay (e.g., int to float),
but try to avoid casting from precise to coarse, for example
• Allowed but loses precision: np.int64(100.9)
• Allowed but messing up completely: np.int16(1000000)
• Not allowed and returns an error: np.float32('hello world')

Out of range
Keeps integer part only

Cast the array into float type
and give the same result

array([0., 1., 2., 3., 4.])

Representing Missing Values

A numeric missing value is represented by np.nan (“not a number”)
• Note: This does not apply to strings, where missing values are

simply denoted by NoneType (None) or empty string ("")

• Comparison logics don’t work on the missing value
• Any comparison between a non-missing value x and np.nan results in
False: e.g., np.nan<0 and np.nan>=0 both evaluate to False

• In general, final data should not contain np.nan; clean the data to
remove or fill missing values before proceeding with data analysis

Exercise: Create Arrays & Cast Types

1. Create a NumPy array of integers from 0 to 999 with dtype=
np.int16, then convert it to dtype= np.float32

2. Create a NumPy array of 1000 zeros with dtype=np.float16,
then convert it to dtype=np.bool

3. Generate a 2D NumPy array with 100 rows and 3 columns:
• Column 0: row numbers 0-99
• Column 1: Continuous values drawn from a uniform distribution between 0 and 1
• Column 2: Binary values (0 or 1) drawn from an uneven coin flip where heads (1)

has a probability of 0.6, and tails (0) has a probability of 0.4
ØHints: see np.random.rand() and np.random.choice() examples in Notebook

Using Generate AI to Generate Code

Prompt
• Same text as the problem instructions. Clear and step-by-step

instructions are often enough to get Copilot to generate good code
Model
• The model used to generate the code here is Claude 3.5 Sonnet

Using Generate AI to Generate Code

Copilot Output

• Starts with a description or
plan for generating the code

• Then provides the Python code

• Note: you may get a different
response or code, but they
should work

Using Generate AI to Generate Code

Ask for code adjustments

• “Please create the array using
the name arr.”

• Generates Python code again
to meet the new requirement

Using Generate AI to Generate Code

Select generated code partially

• Sometimes you only need part
(not all) of the generated code

• Understand the meaning of the
code, and select the part of the
code that does what you need

• For example, no need to print
the first 5 rows of the array

Indexing a Numpy Array

• Recall that list is a Python built-in type: a NumPy array is very
similar to a list, but has more capabilities and computes faster

• Recall that indexes start at 0: this applies to all array-like data
objects, including NumPy arrays

ØIndex of a 1D array a: a[n] selects the element located at n (in a)
ØIndex of a 2D array b: b[m][n] or b[m,n] selects the element

located at row m and column n (in b)

Slicing a NumPy Array

General syntax: array[start:end:step] (similar to list)

Slice the 1D array a:
• Select elements from index n to m: a[n:m+1]
• Select elements from index n to the end: a[n:]
• Select the first n elements (from 0 to n-1): a[:n]

Slice the 2D array b:
• Select row m as a 1D array: b[m,:]
• Select column n as a 1D array: b[:,n]

Size of a NumPy Array
• The ndarray.shape attribute returns the dimension of an array as a

tuple. Suppose a is a 1D array of length 20, and b is a 2D array with 4
rows and 5 columns

a.shape

b.shape

• Alternatively, you can use the built-in len() function to return the
number of elements along the first dimension (axis 0) of an object

len(a)

len(b)

(20,)

(4, 5)
axis 0 axis 1

20

4

Sorting a Numpy Array

The np.sort() function can be used to sort arrays
• Sort a 1D array a:

• np.sort(a)
• Sort a 2D array b on its values in column j (note: np.lexsort()

takes a list of columns to sort on from least to most important)
• np.lexsort([b[:,j]])

Note: np.sort() always sorts numbers in ascending order; To reverse the
order, simply apply slicing after sorting: e.g., np.sorted(a)[::-1]

Unique Values & Frequencies Counts

• A very common way to explore a particular variable in a data set is
to look at its range (i.e., unique values that it can possibly take)

np.unique(a)
…returns the unique values in the 1D array a

• Relatedly, we may also want to know the frequency of each value
np.unique(a, return_counts=True)

…returns unique values and their frequency counts in the 1D array a

Summary Statistics of Data in 2D Array
A 2D NumPy array b stores tabular data, with rows as observations and
columns as variables. To compute summary statistics for each variable,
aggregate the array along rows (axis=0) using aggregation functions like
mean, standard deviation, median, max, or min

Problem: returns np.nan if there is even one missing value in a variable

Statistic Aggregation Function Robust to Missing Values
Mean np.mean(b,axis=0)
StDev np.std(b,axis=0)
Median np.median(b,axis=0)
Maximum np.max(b,axis=0)
Minimum np.min(b,axis=0)
Sum np.sum(b,axis=0)

Summary Statistics of Data in 2D Array
A 2D NumPy array b stores tabular data, with rows as observations and
columns as variables. To compute summary statistics for each variable,
aggregate the array along rows (axis=0) using aggregation functions like
mean, standard deviation, median, max, or min

Problem: returns np.nan if there is even one missing value in a variable

Statistic Aggregation Function Robust to Missing Values
Mean np.mean(b,axis=0) np.nanmean(b,axis=0)
StDev np.std(b,axis=0) np.nanstd(b,axis=0)
Median np.median(b,axis=0) np.nanmedian(b,axis=0)
Maximum np.max(b,axis=0) np.nanmax(b,axis=0)
Minimum np.min(b,axis=0) np.nanmin(b,axis=0)
Sum np.sum(b,axis=0) np.nansum(b,axis=0)

Plot Frequency Histogram for a Variable

• Import the visualization library first
from matplotlib import pyplot as plt

• The underlying NumPy function np.histogram() generates
frequency histograms, but for plotting, it does not need to be
directly called. Instead

plt.hist(array[:,j])
plt.show()

...plots the frequency histogram of the variable in array’s column j

Exercise: NumPy Array Basic Operations
1. Create two 2D NumPy arrays X1 and X2 independently using the

previous exercise with 100 rows and 3 columns (column 0: 0-99;
column 1: Uniform[0,1], column 2: Bernoulli(0.6))

2. Compute the difference between X1 and X2, square each element of
the result, and store the new array in Y
ØHint: matrix operations work on NumPy arrays (though they don’t work on lists)

3. Sort rows of Y on the values of column 1 (hint: use np.lexsort())
4. Compute the unique value counts for Y’s column 2
5. Slice rows 50–99 of columns 1 and 2 from Y into a new array Y2
6. For each column of Y2, compute the mean, median, and standard

deviation, and plot the frequency histograms

