
12/27/25 1

Web Data
1405 Instructor: Ruiqing (Sam) Cao

Required Python Libraries for Today

Main libraries: json, requests, csv,
Beautiful Soup (bs4), pyjsonviewer

import requests
from bs4 import BeautifulSoup
import pyjsonviewer
import json
import csv

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt

If a module is not yet installed, you can type %pip install module
inline in your Jupyter Notebook to install it

Recurring libraries (we’ll
see a lot more of later):
numpy, pandas, matplotlib

Collecting Web Data: Formats

From cleaner (structured) to messier (unstructured):

• Data dumps: usually well-formatted CSV files, or *.parquet which
is common for larger data sets

• APIs (requests and response): output format is often JSON

• HTML raw page source: tree structure through opening/closing
tags (e.g., <p> <div>), attributes and elements contain useful data

Read Data in Pandas

• Pandas provides a powerful library for directly ingesting many
types of data (e.g., tabular, JSON) from a file

>> import pandas as pd
>> data = pd.read_json('example.json')

• Similar for other common file types, e.g., *.csv, *.parquet, *.dta,
*.xlsx, etc.

Read & Write CSV Files

• Read the CSV file line by line using the Python csv module

>> import csv
>> with open('crunchbase_europe_2016_2020.csv','r') as f:
>> f_csv = csv.reader(f, delimiter=',')
>> for row in f_csv:
>> print(row)

Read & Write JSON Data
Suppose you have some raw JSON data stored in raw_string which
is just a piece of text that satisfies the formatting requirements for
JSON parsing (e.g., it looks like nested lists and dictionaries)
• To load the data into a JSON object data
>> import json
>> data = json.loads(raw_string)
• To convert the JSON object into
>> raw_string = json.dumps(data)

• HTML/XML parsing quite similar (follows the same tree structure
broadly defined), but may require additional “data janitorial” work

JSON Objects: Basic Rules

• JavaScript Object Notation (JSON) is a simple and flexible text-
based format for representing semi-structured data

• JSON is widely used in web development for data exchange
between applications: Data retrieved from API calls are often in
JSON format

• A raw JSON string is parsed into a JSON object, which roughly
consists of nested dictionaries (with some differences) and lists

JSON Objects: Basic Rules

JSON data are represented by key-value pairs and elements in
arrays, separated by commas
• Keys are always strings and placed in double quotes
• Values can be strings (e.g.,"text"), numbers (e.g.,123, 12.3),

Booleans (true/false), null value (null), objects (e.g., nested
dictionaries {"key":"value"}), arrays (e.g., lists of values [v1,v2])

èCurly Braces {}: Represent a dictionary
èSquare Brackets []: Represent a list/array
{"name":"Astrid","age":35,"is_student":false,"skills":["Python","Ja
va"],"address":{"city":"Stockholm","zip":"10055"},"phone":null}

JSON Objects vs. Dictionaries
JSON strings are stored in text format and look like dict() in Python,
but they are fundamentally quite different:

• JSON can only contain double quotes "", but not single quotes ''

• Tuples cannot be part of a JSON string (almost anything else is
fine: lists, nested dictionaries, strings, Booleans, numbers)

• Boolean values must be written as true and false, and missing
values as null (not True/False and None)

Web Data Sources: Structured Databases
Publicly listed firms (e.g., Spotify, Volvo, Ericsson) usually publish
a lot of information in their mandatory regulatory filings
• Check out Compustat North American & Compustat Global
èGet a Wharton Research Data Services (WRDS) account from

SSE library (https://wrds-www.wharton.upenn.edu/pages/get-
data/compustat-capital-iq-standard-poors/)

• Hundreds of variables, directly downloadable data in CSV format,
already cleaned and standardized
• Doesn’t cover startup companies and other larger companies that

are not publicly traded (e.g., Klarna)

https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/

Web Data Sources: General Search

If you are starting a general data search

• Before ChatGPT:
• Google dataset search: https://datasetsearch.research.google.com
• Kaggle: https://www.kaggle.com/datasets/rajugc/kaggle-dataset

• Now you can also ask ChatGPT (or another LLM), plain & simple

• Don’t forget to ask your professors and industry friends

https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets/rajugc/kaggle-dataset
https://www.kaggle.com/datasets/rajugc/kaggle-dataset
https://www.kaggle.com/datasets/rajugc/kaggle-dataset

Web Data Sources: Open Data & APIs

Open data archives and APIs

• GitHub: e.g., https://github.com/collections/open-data,
https://github.com/DATASETS
• Open APIs: e.g., https://github.com/public-apis/public-

apis?tab=readme-ov-file, https://rapidapi.com/collection/list-of-
free-apis

… and A LOT MORE !

https://github.com/collections/open-data
https://github.com/collections/open-data
https://github.com/collections/open-data
https://github.com/DATASETS
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis

Web Data Sources: Web Crawling
Web crawling (brute force, not recommended unless you’re Batman)
• Send HTTP requests and parse source page HTML
• Dynamic web-scraping (e.g., using Selenium)

Disadvantages relative to APIs and downloadable clean data:
• Usually takes longer: each HTTP call takes longer than an API call for

the same amount of information (lots of tags instead of actual data)
• Usually need more cleaning: additional regular expression parsing
• HTML structures change across pages over time in unpredictable ways
• Sending fake traffic to website can overload the server (DDoS attacks),

and many websites now use bot blockers to thwart web crawlers

Web Data Sources: Large Platforms

Look for the glue (software tools to facilitate data collection)
• Widely-used large platforms have a lot of data, but they are not

easy to retrieve or automatically download at scale: e.g., YouTube
videos, Amazon products, Google search, Reddit posts, and more
• They often contain useful unstructured data: e.g., images, audio

• There tend to be available tools (e.g., Python module) to facilitate
data collection at scale for commonly used platforms

Web Data Sources: Large Platforms

• For example, you can download YouTube videos
>> from pytubefix import YouTube
>> from pytubefix import Playlist
>> from pytubefix.cli import on_progress

• Transcription tools to turn audio into text
• e.g., OpenAI Whisper (https://openai.com/index/whisper/), VOSK

(https://github.com/alphacep/vosk-api?tab=readme-ov-file)

• Download GitHub repositories (data, code, and documentation)
In command line, “git clone [URL]”

https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file

