Web Data

1405 Instructor: Ruiging (Sam) Cao




Required Python Libraries for Today

Main libraries: json, requests, csv, |import requests
Beautiful Soup (bs4), pyjsonviewer |from bs4 import BeautifulSoup
import pyjsonviewer

import json

import csv

Recurring libraries (we’ll import numpy as np
see a lot more of later): import pandas as pd
numpy, pandas, matplotlib | from matplotlib import pyplot as plt

If amodule is not yet installed, you can type %pip install module
inline in your Jupyter Notebook to install it



Collecting Web Data: Formats

From cleaner (structured) to messier (unstructured):

 Data dumps: usually well-formatted CSV files, or *.parquet which
Is common for larger data sets

* APIs (requests and response): output format is often JSON

* HTML raw page source: tree structure through opening/closing
tags (e.g., <p> <div>), attributes and elements contain useful data



Read Data in Pandas

* Pandas provides a powerful library for directly ingesting many
types of data (e.g., tabular, JSON) from a file

>> import pandas as pd
>> data = pd.read_json('example.json')

* Similar for other common file types, e.g., *.csv, *.parquet, *.dta,
* xlsx, etc.




Read & Write CSV Files

* Read the CSV file line by line using the Python csv module

>> import csv

>> with open('crunchbase_europe 2016 2020.csv','r') as f:
>> f csv = csv.reader(f, delimiter="',")

>> for row in f _csv:

>> print(row)




Read & Write JSON Data

Suppose you have some raw JSON data stored in raw_string which
IS just a piece of text that satisfies the formatting requirements for
JSON parsing (e.g., it looks like nested lists and dictionaries)

* To load the data into a JSON object data

>> import json
>> data = json.loads(raw_string)

* To convert the JSON object into
>> raw_string = json.dumps(data)

* HTML/XML parsing quite similar (follows the same tree structure
broadly defined), but may require additional “data janitorial” work



JSON Objects: Basic Rules

e JavaScript Object Notation (JSON) is a simple and flexible text-
based format for representing semi-structured data

* JSON is widely used in web development for data exchange

between applications: Data retrieved from API calls are often in
JSON format

* Araw JSON string is parsed into a JSON object, which roughly
consists of nested dictionaries (with some differences) and lists



JSON Objects: Basic Rules

JSON data are represented by key-value pairs and elements in
arrays, separated by commas

* Keys are always strings and placed in double quotes

* Values can be strings (e.g., text"), numbers (e.g.,123, 12.3),
Booleans (true/false), null value (null), objects (e.g., nested
dictionaries {"key":"value"}), arrays (e.g., lists of values [v1,v2])

=>» Curly Braces {}: Represent a dictionary
=>» Square Brackets []: Represent a list/array

{"name" :"Astrid", "age":35,"is student":false,"skills":["Python", "Ja
va"],"address":{"city":"Stockholm","zip":"10055"}, "phone" :null}



JSON Obijects vs. Dictionaries

JSON strings are stored in text format and look like dict () in Python,
but they are fundamentally quite different:

* JSON can only contain double quotes "", but not single quotes "

* Tuples cannot be part of a JSON string (almost anything else is
fine: lists, nested dictionaries, strings, Booleans, numbers)

* Boolean values must be written as true and false, and missing
values as null (not True/False and None)



Web Data Sources: Structured Databases

Publicly listed firms (e.g., Spotify, Volvo, Ericsson) usually publish
a lot of information in their mandatory regulatory filings

* Check out Compustat North American & Compustat Global

=>» Get a Wharton Research Data Services (WRDS) account from
SSE library (https://wrds-www.wharton.upenn.edu/pages/get-
data/compustat-capital-ig-standard-poors/)

* Hundreds of variables, directly downloadable data in CSV format,
already cleaned and standardized

* Doesn’t cover startup companies and other larger companies that
are not publicly traded (e.g., Klarna)


https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/
https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/

Web Data Sources: General Search

If you are starting a general data search

e Before ChatGPT:

* Google dataset search: https://datasetsearch.research.google.com
* Kaggle: https://www.kaggle.com/datasets/rajugc/kaggle-dataset

* Now you can also ask ChatGPT (or another LLM), plain & simple

* Don’t forget to ask your professors and industry friends


https://datasetsearch.research.google.com/
https://www.kaggle.com/datasets/rajugc/kaggle-dataset
https://www.kaggle.com/datasets/rajugc/kaggle-dataset
https://www.kaggle.com/datasets/rajugc/kaggle-dataset

Web Data Sources: Open Data & APIs

Open data archives and APlIs

* GitHub: e.g., https://github.com/collections/open-data,
https.//github.com/DATASETS

* Open APls: e.g., https://github.com/public-apis/public-
apis?tab=readme-ov-file, https://rapidapi.com/collection/list-of-
free-apis

...and ALOT MORE!


https://github.com/collections/open-data
https://github.com/collections/open-data
https://github.com/collections/open-data
https://github.com/DATASETS
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://github.com/public-apis/public-apis?tab=readme-ov-file
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis
https://rapidapi.com/collection/list-of-free-apis

Web Data Sources: Web Crawling

Web crawling (brute force, not recommended unless you’re Batman)
* Send HTTP requests and parse source page HTML
* Dynamic web-scraping (e.g., using Selenium)

Disadvantages relative to APls and downloadable clean data:

* Usually takes longer: each HTTP call takes longer than an API call for
the same amount of information (lots of tags instead of actual data)

* Usually need more cleaning: additional regular expression parsing
* HTML structures change across pages over time in unpredictable ways

* Sending fake traffic to website can overload the server (DDoS attacks),
and many websites now use bot blockers to thwart web crawlers



Web Data Sources: Large Platforms

Look for the glue (software tools to facilitate data collection)

* Widely-used large platforms have a lot of data, but they are not
easy to retrieve or automatically download at scale: e.g., YouTube
videos, Amazon products, Google search, Reddit posts, and more

* They often contain useful unstructured data: e.g., images, audio

* There tend to be available tools (e.g., Python module) to facilitate
data collection at scale for commonly used platforms




Web Data Sources: Large Platforms

* For example, you can download YouTube videos
>> from pytubefix import YouTube
>> from pytubefix import Playlist
>> from pytubefix.cli import on_progress

* Transcription tools to turn audio into text

* e.g., OpenAl Whisper (https://openai.com/index/whisper/), VOSK
(https://github.com/alphacep/vosk-api?tab=readme-ov-file)

* Download GitHub repositories (data, code, and documentation)
In command line, “git clone [URL]”


https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file
https://github.com/alphacep/vosk-api?tab=readme-ov-file

