
12/30/25 1

Semi-structured
Data & JSON
1405 Instructor: Ruiqing (Sam) Cao

Structured Data & Relational Database

• Structured data: Information organized in
tabular format (e.g., spreadsheet), i.e., in
rows and columns

• Relational data: data represented as
relations, where a relation is a set of
tuples sharing the same attributes
• → Structured data organized into tables,

where relationships are explicitly defined
using keys Structured

Data

Relational
Data

• Entities, Attributes
• Primary (foreign) keys
• Normalization

Dealing With Semi- & Unstructured Data

• Review: many forms of data cannot be entirely structured within a
pre-defined data model

• Unstructured data: e.g., text, image, audio, video…

• Semi-structured data: have some level of organization (e.g., HTML/XML
tags or markers) but does not strictly conform to a rigid schema like
structured data

Common Types of Semi-Structured Data
HTML/XML

JSON

Tags and markers indicate structure

Nested lists and dictionaries

Common Types of Semi-Structured Data

• HTML and XML are date objects that have some structure but are
more flexible than actually structured data
• JSON (Java Script Object Notation) is a very popular format used

in many different Internet companies

èTheir structures can be represented by trees
èAccess to data is navigational through the root-to-node path to

retrieve information

Exercise: Tree Structure of JSON Data
Product
information in
JSON format

In command line:
1. Install pyjsonviewer with
pip install pyjsonviewer
2. Visualize the JSON file with
pyjsonviewer –f example.json

Viewing JSON’s Tree Structure
In command line:

1. Install pyjsonviewer with
pip install pyjsonviewer

2. Visualize the JSON file with
pyjsonviewer –f example.json

Viewing JSON’s Tree Structure
In command line:

1. Install pyjsonviewer with
pip install pyjsonviewer

2. Visualize the JSON file with
pyjsonviewer –f example.json

The data consists of nested lists
and dictionaries

Viewing JSON’s Tree Structure
In Python:

1. Import the json module
import json

2. Load the JSON data object
with open('example.json','r') as f:
 x = json.loads(f.read())

The loaded JSON object is a
nested dictionary stored in x
which has the type dict()

