
2/3/26 1

Relational Database
1405 Instructor: Ruiqing (Sam) Cao



Design of Relational Database

• A relational database is…
a collection of data tables
structured to store and organize data
that adhere to a relational model, which defines 

the relationships between the tables 
and the variables contained in them



Relational Model: Table

A Table (relation) is a 2D table representing data about an entity

• Each row contains data about an instance of the entity, and 
each column represents an attribute of the entity

• Each column has a distinct name, and contains entries of the 
same data type

• Orders of columns or rows are unimportant



Relational Model: Table

Column name

Column

Row



Relational Model: Relationship

Relationships define how two or more data tables are 
associated with each other, implemented through primary key 
and foreign key, and have four types of cardinalities:

• One-to-one (1:1)
• One-to-many (1:N)
• Many-to-one (N:1)
• Many-to-many (N:N)



Relational Model: Relationship

Ø Below are two tables: Student and Course. A student can sign up for multiple 
courses (e.g., up to 4), and a course can enroll multiple students (e.g., up to 30).

Ø What is the cardinality of the relationship (in course registration records) 
between Student and Course?

many-to-many (N:N)



Relational Model: Primary Key

Candidate key: A minimal set of one or more columns that can 
uniquely identify each row in a table (can have null values)

Primary Key: One of the candidate keys selected to uniquely 
identify each row, and cannot have null values

Example: In a data table representing all students at SSE, the 
registration number and the email address are both candidate keys, 
and we can select the registration number as the primary key



Relational Model: Primary Key

• Primary Key: One of the candidate keys selected to uniquely 
identify each row, and cannot have null values

• Composite key: Primary key consisting of two or more attributes 

• Surrogate key: A unique, numeric value added to the table to 
serve as primary key (no intrinsic meaning, introduced because 
natural composite keys do not exist or are too complex)



Relational Model: Foreign Key

Foreign Key: a set of columns in a table that establishes a link 
between two tables.

• The foreign key in one table points to the primary key in another 
table, which defines a relationship between the tables

• The foreign key does not necessarily uniquely identify each row

• The foreign key does not necessarily have the same name as the 
primary key in the other table it points to



Relational Model: Foreign Key

Example: StudyProgram is the foreign key in the Student table 
that establishes the link between Student and Program through 
linking to the primary key ProgramName in the Program table.



Many-to-Many Relationships

• Many-to-many (N:N) relationships are not ideal in database 
system design 

• We need to break tables with many-to-many (N:N) relationships 
down into smaller chunks and link them back together using 
primary key and foreign key (part of the normalization process)



Many-to-Many Relationships
Before normalization (partial 
dependencies of attributes 
related only to Student or only 
to Course): contains many-to-
many relationship between 
entities Student and Course

After normalization (no 
partial dependencies left): 
split into three tables, with 
only one-to-many (1:N) 
and many-to-one (N:1) 
relationships between 
tables



Relational Model: Constraints

Some examples (not exhaustive of all possibilities):

• Value constraint: e.g., income must not be negative

• Uniqueness constraint: e.g., a student can only have one school 
email address

• Cardinality constraint: e.g., a student can take at least 1 and no 
more than 4 classes per period

• Type constraint (special case of domain constraint): e.g., name 
must be alphabetical, date must be of the format YYYYMMDD



Anomalies and Data Integrity

• Without normalization, modifying a database with new 
information can result in anomalies and cause inconsistencies
• Insertion anomaly: an instance with null values on a variable 

cannot be inserted into the table

Example: a student enrolled but haven’t yet 
registered for any courses (studentID and 
StudentEmail are available, but no courseID 
or any course-related data is entered)



Anomalies and Data Integrity

• Without normalization, updating a database with new information 
can give rise to anomalies and lead to inconsistent data
• Update anomaly: same information is stored in multiple rows, 

and updating one row requires updating all related rows

Example: when a change to the study program 
requires updating ProgramDescription for the 
MBM program, it needs to be updated for all 
students enrolled in the MBM program



Anomalies and Data Integrity

• Without normalization, updating a database with new information 
can give rise to anomalies and lead to inconsistent data
• Deletion anomaly: deleting a piece of unwanted data causes 

desired information to be deleted as well

Example: when the last student enrolled in 
the course 1405 drops it, no record of the 
class will remain in the data even though the 
class itself still exists



Database Normalization

• Database normalization is an approach developed over the years 
to address issues of various anomalies

• Normalization is the process of breaking down a large table into 
smaller tables that adhere to certain rules, and linking them 
together with foreign keys

• Failing to normalize data can lead to several types of anomalies 
that compromise data integrity and lead to inconsistent data



Normalization and Normal Forms
• Normalization solve the anomalies by reconstructing the 

database to remove redundancies in the data

• A series of normal forms sequentially (1st, 2nd, 3rd are the most 
common) defined by the previous one and some additional rules
• 1st Normal Form (1NF) ensures every column contains the same type of 

data with atomic, indivisible values, and there is no repeating groups or 
arrays, and each row is unique
• 2nd Normal Form (2NF) requires 1NF and all non-prime attributes (not 

part of a candidate key) fully functionally dependent on the primary key
• 3rd Normal Forms (3NF) requires 2NF and all non-prime attributes 

depend only on the primary key (not on other non-prime attribute)



Normalization and Normal Forms

Before normalization:

After normalization:



Normal Forms: Example

• Read the (hypothetical) student registration records table 
(“registration_records_anon.csv”) into Jupyter Notebook

• We’ll demonstrate normal forms using this table as an example



1st Normal Form (1NF)

• 1NF ensures every column contains the same type of data with 
atomic, indivisible values, and there is no repeating groups or 
arrays, and each row is unique

For example:
ØA column cannot store two different types of values (e.g., cannot 

have studentName and departmentName in the same column in 
different rows)

ØA column or columns cannot store more than one value (e.g., 
cannot have a list of phone numbers in the same column, or 
multiple columns for several phone numbers)



1st Normal Form (1NF): Example

• In the example of student registration records table (see Notebook 
for details): student_phone contains non-atomic values 
(multiple phone numbers). This violates 1NF.

non-atomic values



2nd Normal Form (2NF)

• 2NF requires 1NF and all non-prime attributes (not part of a 
candidate key) fully functionally dependent on the primary key
• Fully functional dependency: a column is determined by the full primary 

key; partial dependency violates 2NF (a column is determined by only part 
(and not all of the composite primary key)

• 2NF is fundamentally about organizing tables into separate 
“themes” (e.g., Student, Program, etc) by ensuring that all non-
prime attributes are determined by ALL parts of the primary key

Partial dependency

Primary Key



2nd Normal Form (2NF): Example

• In this example, student_country (also student_phone and 
student_city) only depends on student_id. 
• student_country is only partially (not fully) dependent on the 

entire primary key (program,student_id)
• This violates 2NF.

partial dependency



3rd Normal Form (3NF)

• 3NF requires 2NF and all non-prime attributes depend only on the 
primary key (not on other non-prime attribute)
• Eliminate transitive dependency: a column depends on a non-prime 

attribute (which in turn depends on the primary key)

• 3NF removes indirect dependency between non-prime attributes 
and the primary key through intermediate attributes

Transitive dependency

Primary Key



3rd Normal Form (3NF): Example

• In this example, registered_year (also registered_month and 
registered_day) depends entirely on registered (a non-prime 
attribute, i.e., not part of a candidate key).
• registered_year is only indirectly (transitively) dependent on 

the primary key (program, student_id) through registered.
• This violates 3NF. transitive dependency



Denormalization and Unnormalized Form

• Sometimes we do not want full normalization (e.g., analytical 
databases and dimensional model where data structure is better 
kept simple)

ØDenormalization: recombine some tables back together after 
they had been split apart to conform to normalization rules

• Unnormalized Form (UNF): when raw data is stored without any 
formal structure or normalization applied (e.g., unstructured data 
collected from real-world sources, one big CSV file with all data)



Data Model Design & Data Operations

• Translating a data model into a practical relational database with 
a structured schema requires dealing with the reality of messy 
data which is often the case with real-world data sources

• Basic data operations useful for data cleaning:
• Filtering: selecting a subset of rows satisfying on certain conditions
• Projection: selecting a subset of columns
• Union: combining rows and removing duplicates
• Join: combine columns based on common data elements



Summary of Data Modeling Key Points

• Database design needs to take into consideration different 
entities (such as transactions, products, consumers) and the 
relationships between them

• Changes are constantly applied to the database, which will 
require modifying the data in more than one place, thus the design 
needs to ensure data integrity throughout the entire system (by 
applying the data normalization process)

• Transactional and analytical data have distinct features and 
require different modeling approaches to balance data integrity 
with structural simplicity (ER Model vs. Dimensional Model)



Exercise: Data Normalization

The dataset crunchbase_europe_2016_2020.csv contains information about 
funding rounds and organizational profiles of European startups founded between 
2016 and 2020. Your task is to evaluate the data structure from a database design 
perspective and improve it by applying normalization techniques.
1. Examine the CSV File: Review the data and understand its structure. Look at the 

columns and rows to identify key entities, relationships, and any redundancy.
2. Identify Potential Problems: Discuss the issues in the current structure, such as 

update anomalies, deletion anomalies, and insertion anomalies
3. Does the current structure violate 1NF? Write a modified structure that satisfies 1NF
4. Does the modified structure violate 2NF? Write a modified structure that satisfies 2NF
5. Does the modified structure violate 3NF? Write a modified structure that satisfies 3NF


