Relational Database

1405 Instructor: Ruiging (Sam) Cao

Design of Relational Database

* Arelational database is...
a collection of data tables
structured to store and organize data
that adhere to a relational model, which defines
the relationships between the tables

and the variables contained in them

Relational Model: Table

A Table (relation) is a 2D table representing data about an entity

* Each row contains data about an instance of the entity, and
each column represents an attribute of the entity

e Each column has a distinct name, and contains entries of the
same data type

* Orders of columns or rows are unimportant

Relational Model: Table

Column

A B C D

1 fid v first_name lis_group date_joined
2> [1000012637011968430 Jimmy T FALSE 2012-10-11T18:06:36
3 [1000013232603136694 oh FALSE 2012-10-11T18:07:47
4 [1000018861359104348 uﬂriila‘ mn name FALSE 2012-10-11T18:18:58
5 [1000025236701184812 Kelly FALSE 2012-10-11T18:31:38
£ 11000034061516800068 Sarah EALSE 2012-10-11718:49-10
Row 7 [1000034866823168031 Kyle FALSE 2012-10-11T18:50:46
S 1 o2dITIiUEel I"RI:SE ZULZ-1U-11119.1/.17
9 [1000055460855808470 Bryan FALSE 2012-10-11T19:31:41
10 [1000057784500224537 Kyle FALSE 2012-10-11T19:36:18
11 [1000068983291904492 Madison FALSE 2012-10-11T19:58:33
12 [1000071936081920858 Brittany FALSE 2012-10-11T20:04:25
13 [1000088092540928306 Alana FALSE 2012-10-11T20:36:31
14 [1000095591956480783 Diane FALSE 2012-10-11T20:51:25
15 [1000100297965568117 Nicole FALSE 2012-10-11T21:00:46
16 [1000119910531072482 Tim FALSE 2012-10-11T21:39:44
17 [1000140982714368204 Tien FALSE 2012-10-11T22:21:36
18 [1000144472375296896 Kayla FALSE 2012-10-11T22:28:32
19 [1000155285291008202 Brendan FALSE 2012-10-11T22:50:01
1000165729107968701 Zachary FALSE 2012-10-11T23:10:46
Maxwell FALSE 2012-10-11T23:56:58

Relational Model: Relationship

Relationships define how two or more data tables are
associated with each other, implemented through primary key
and foreign key, and have four types of cardinalities:

* One-to-one (1:1)

* One-to-many (1:N)

* Many-to-one (N:1)

* Many-to-many (N:N)

Relational Model: Relationship

» Below are two tables: Student and Course. A student can sign up for multiple
courses (e.g., up to 4), and a course can enroll multiple students (e.g., up to 30).

» What is the cardinality of the relationship (in course registration records)
between Student and Course?

Course

r ourselD integer
Student CourseTitle varchar
StudentID integer CourseECTS float
StudentEmail varchar CourseDirectorlD integer
StudyProgram varchar CourseDepartment varchar
EnrollDate date CourseGrading enum
LAddress text | CourseDescription text |

Relational Model: Primary Key

Candidate key: A minimal set of one or more columns that can
uniquely identify each row in a table (can have null values)

Primary Key: One of the candidate keys selected to uniquely
identify each row, and cannot have null values

Example: In a data table representing all students at SSE, the
registration number and the email address are both candidate keys,
and we can select the registration number as the primary key

Relational Model: Primary Key

* Primary Key: One of the candidate keys selected to uniquely
identify each row, and cannot have null values

* Composite key: Primary key consisting of two or more attributes

* Surrogate key: A unique, numeric value added to the table to
serve as primary key (no intrinsic meaning, introduced because
natural composite keys do not exist or are too complex)

Relational Model: Foreign Key

Foreign Key: a set of columns in a table that establishes a link
between two tables.

* The foreign key in one table points to the primary key in another
table, which defines a relationship between the tables

* The foreign key does not necessarily uniquely identify each row

* The foreign key does not necessarily have the same name as the
primary key in the other table it points to

Relational Model: Foreign Key

Example: StudyProgram is the foreign key in the Student table
that establishes the link between Student and Program through

linking to the primary key ProgramName in the Program table.

'Student |

StudentiD PK Program

StudentEmail & ProgramName__ PK
4 FK g | ProgramDepartment

EnrollDate ProgramDescription

Address k

Many-to-Many Relationships

* Many-to-many (N:N) relationships are not ideal in database
system design

* We need to break tables with many-to-many (N:N) relationships
down into smaller chunks and link them back together using
primary key and foreign key (part of the normalization process)

Many-to-Many Relationships

Before normalization (partial Registration After normalization (no
. . StudentID PK

dependencies of attributes CourselD K partial dependencies left):
related only to Student or onl RegistrationPeriod iti ‘

.y . y‘tudentEmail splitinto three tables, with
to Course): contains many-to- StudyProgram only one-to-many (1:N)
many relationship between CourseTitle and many-to-one (N:1)

ities Student and Course SourseEeT ‘ i
entities CoursaDescription relationships between
tables

 Student 1 | Registration ' Course
StudentIiD PK StudentiD PK CourselD PK
StudentEmail { < CourselD PK . || CourseTitle
StudyProgram RegistrationPeriod CourseECTS

)]) i CourseDescription

Relational Model: Constraints

Some examples (not exhaustive of all possibilities):
* Value constraint: e.g., income must not be negative

* Uniqueness constraint: e.g., a student can only have one school
email address

* Cardinality constraint: e.g., a student can take at least 1 and no
more than 4 classes per period

* Type constraint (special case of domain constraint): e.g., name
must be alphabetical, date must be of the format YYYYMMDD

Anomalies and Data Integrity

* Without normalization, modifying a database with new
information can result in anomalies and cause inconsistencies

* Insertion anomaly: an instance with null values on a variable
cannot be inserted into the table

'Registration
StudentID PK
Example: a student enrolled but haven’t yet CourselD PK
registered for any courses (studentlD and RegistrationPeriod
StudentEmail are available, but no courselD I 2::5:21
or any course-related data is entered) CourseTitle
kCourseDescription

Anomalies and Data Integrity

* Without normalization, updating a database with new information
can give rise to anomalies and lead to inconsistent data

 Update anomaly:. same information is stored in multiple rows,
and updating one row requires updating all related rows

'Student
Example: when a change to the study program StudentiD integer
requires updating ProgramDescription for the StudentEma varchar
. _StudyProgram varchar
MBM program, it needs to be updated for all -
nrollDate date
students enrolled in the MBM program ProgramDepartment | varchar
ProgramDescription |text

Anomalies and Data Integrity

* Without normalization, updating a database with new information
can give rise to anomalies and lead to inconsistent data

* Deletion anomaly: deleting a piece of unwanted data causes
desired information to be deleted as well

'Registration
StudentiD PK
Example: when the last student enrolled in CourselD PK
the course 1405 drops it, no record of the RegistrationPeriod
. . . _St dentEmail
class will remain in the data even though the e
: : : StudyProgram
class itself still exists CourseTitle
CourseDescription

Database Normalization

 Database normalization is an approach developed over the years
to address issues of various anomalies

* Normalization is the process of breaking down a large table into
smaller tables that adhere to certain rules, and linking them
together with foreign keys

* Failing to normalize data can lead to several types of anomalies
that compromise data integrity and lead to inconsistent data

Normalization and Normal Forms

* Normalization solve the anomalies by reconstructing the
database to remove redundancies in the data

* A series of normal forms sequentially (1st, 2nd, 37 gre the most
common) defined by the previous one and some additional rules

* 1St Normal Form (1NF) ensures every column contains the same type of
data with atomic, indivisible values, and there is no repeating groups or
arrays, and each row is unique

« 2"d Normal Form (2NF) requires 1NF and all non-prime attributes (not
part of a candidate key) fully functionally dependent on the primary key

» 3'9 Normal Forms (3NF) requires 2NF and all non-prime attributes
depend only on the primary key (not on other non-prime attribute)

Normalization and Normal Forms

._ .+ . | | Registration
Before normalization: | "~ -
CourselD PK

RegistrationPeriod
StudentEmail
StudyProgram
CourseTitle

CourseECTS

CourseDescription

After normalization

' Student ' Registration Course
StudentID PK StudentID PK CourselD PK
StudentEmail } <| CourselD PK > |— CourseTitle
StudyProgram RegistrationPeriod CourseECTS

) ’) J CourseDescription |

Normal Forms: Example

* Read the (hypothetical) student registration records table
(“registration_records_anon.csv”) into Jupyter Notebook

* We’ll demonstrate normal forms using this table as an example

program student_id status registered registered_year registered_month registered_day student_phone student_country student_city
MFIN Corporate Fin.

0 & Investment 32 Student 28/08/2024 2024 8 28 O 042t Sverige Stockholm
Mgmt

BSc in Business and Degree
1 . 32 completed 23/08/2021 2021 8 23 /0 Sverige Stockholm
Economics 2020

2024
MFIN Corporate Fin. :
2 & Investment 45 Student 28/08/2024 2024 8 28 *”*E;

0709
Mgmt
. o Degree
BSc in Business and . .
3 Economics 2020 R 2021 8 23
070g*+sers
Exchange: MSc in
4 Business & 34 Student 20/01/2025 2025 1 20 NaN NaN NaN

Economics

1t Normal Form (1NF)

* TNF ensures every column contains the same type of data with
atomic, indivisible values, and there is no repeating groups or
arrays, and each row is unique

For example:

» A column cannot store two different types of values (e.g., cannot
have studentName and departmentName in the same column in
different rows)

» A column or columns cannot store more than one value (e.g.,
cannot have a list of phone numbers in the same column, or
multiple columns for several phone numbers)

1st Normal Form (1NF): Example

* In the example of student registration records table (see Notebook
for details): student_phone contains non-atomic values
(multiple phone numbers). This violates 1NF.

non-atomic values

9
+46725******
10 +4 6733 ***x%

2nd Normal Form (2NF)

* 2NF requires TNF and all non-prime attributes (not part of a
candidate key) fully functionally dependent on the primary key
* Fully functional dependency: a column is determined by the full primary

key; partial dependency violates 2NF (a column is determined by only part
(and not all of the composite primary key)

* 2NF is fundamentally about organizing tables into separate
“themes” (e.g., Student, Program, etc) by ensuring that all non-
prime attributes are determined by ALL parts of the primary key

Primary Key

StudentiD CourselD StudentEmail_RegistrationPeriod RegistrationYear

Partial dependency

2"d Normal Form (2NF): Example

* In this example, student country (also student_phone and
student city)only depends on student 1id.

* student country is only partially (not fully) dependent on the

entire primary key (program,student _1id)
+ This violates 2NF. = ————

program [student_id | |student_country student_phone tudent_city

MFIN Corporate Fin. & Investment Mgmt Sverige 070 Stockholm
BSc in Business and Economics 2020 Sverige] L @ 0704%xxxxx Stockholm

MFIN Corporate Fin. & Investment Mgmt
0709******

BSc in Business and Economics 2020
0709******
Exchange: MSc in Business & Economics NaN NaN

MAVFM Accounting, Valuation ∓ Financial Mgmt Sverige] | @ +46708****x* Johanneshov

D o A W N o O

BSc in Business and Economics 2020 Sverige] = = +46708**xx*x Johanneshov

3rd Normal Form (3NF)

* 3NF requires 2NF and all non-prime attributes depend only on the
primary key (not on other non-prime attribute)

* Eliminate transitive dependency: a column depends on a non-prime
attribute (which in turn depends on the primary key)

* SNF removes indirect dependency between non-prime attributes
and the primary key through intermediate attributes

Primary Key

StudentID CourselD |StudentEmail RegistrationPeriod RegistrationYearl
Transitive dependency

3'd Normal Form (3NF): Example

* In this example, registered year (also registered month and
registered day) depends entirely on registered (a non-prime
attribute, i.e., not part of a candidate key).

* registered yearis only indirectly (transitively) dependent on
the primary key (program, student 1id)through registered.

 This violates 3NF.

program student_id registered] | registered_year [Jregistered_month|| registered_day
0 MFIN Corporate Fin. ∓ Investment Mgmt 32 |§12024-08-28 2024 8 28
1 BSc in Business and Economics 2020 32 |} 2021-08-23 2021 8 23
2 MFIN Corporate Fin. & Investment Mgmt 45 |12024-08-28 2024 8 28
3 BSc in Business and Economics 2020 45 |1 2021-08-23 2021 8 23
4 Exchange: MSc in Business & Economics 34 |§ 2025-01-20 2025 1 20
5 | MAVFM Accounting, Valuation & Financial Mgmt 31 |§ 2023-08-21 2023 8 21

Denormalization and Unnormalized Form

* Sometimes we do not want full normalization (e.g., analytical
databases and dimensional model where data structure is better
kept simple)

»Denormalization: recombine some tables back together after

they had been split apart to conform to normalization rules

* Unnormalized Form (UNF): when raw data is stored without any
formal structure or normalization applied (e.g., unstructured data
collected from real-world sources, one big CSV file with all data)

Data Model Design & Data Operations

* Translating a data model into a practical relational database with
a structured schema requires dealing with the reality of messy
data which is often the case with real-world data sources

* Basic data operations useful for data cleaning:
* Filtering: selecting a subset of rows satisfying on certain conditions
* Projection: selecting a subset of columns
* Union: combining rows and removing duplicates
* Join: combine columns based on common data elements

Summary of Data Modeling Key Points

* Database design needs to take into consideration different
entities (such as transactions, products, consumers) and the
relationships between them

* Changes are constantly applied to the database, which will
require modifying the data in more than one place, thus the design
needs to ensure data integrity throughout the entire system (by
applying the data normalization process)

* Transactional and analytical data have distinct features and
require different modeling approaches to balance data integrity
with structural simplicity (ER Model vs. Dimensional Model)

Exercise: Data Normalization

The dataset crunchbase_europe_2016_2020.csv contains information about
funding rounds and organizational profiles of European startups founded between
2016 and 2020. Your task is to evaluate the data structure from a database design

perspective and improve it by applying normalization techniques.

1. Examine the CSV File: Review the data and understand its structure. Look at the
columns and rows to identify key entities, relationships, and any redundancy.

2. ldentify Potential Problems: Discuss the issues in the current structure, such as
update anomalies, deletion anomalies, and insertion anomalies

Does the current structure violate 1TNF? Write a modified structure that satisfies TNF
Does the modified structure violate 2NF? Write a modified structure that satisfies 2NF

Does the modified structure violate SNF? Write a modified structure that satisfies SNF

