
1/27/26 1

Python: List/Dictionary 
Comprehension
1405 Instructor: Ruiqing (Sam) Cao



List Comprehension

• An iterable is any data object that can be iterated over (i.e., 
returned one at a time, or looped over with a for or while loop)
e.g., list, dict, str, tuple, set

• List comprehension generates a new list in a concise way by 
applying an expression to each element of an existing iterable

• Syntax: [expression for x in iterable if condition]
→ The “if condition” part is optional



Iterable vs. Non-Iterable

• An iterable type is any data object that can be iterated over (i.e., 
returned one at a time, or looped over with a for or while loop)

    e.g., list, dict, str, tuple, set
ØNon-scalars are not necessarily iterable, though a lot of them are

• A non-iterable type is the opposite of an iterable type
ØAll scalars in Python are technically non-iterable
ØStrings are a bit ambiguous: a string represent an atomic, indivisible 

value (e.g., in the database context it satisfies 1NF), but a string in 
Python is technically non-scalar (characters) and iterable as well



Exercises: List Comprehension
1. Create a new list that equals element-wise sum of two lists li1 

and li2 of the same length (Basic) 
2. Create a new list that consists of integer elements from an 

existing list li (Filter) 
3. Turn a list li of integers into 5-digit zip codes of string type with 

0s in the beginning to fill space (hint: use f-string :05) (Function) 
4. Create a Boolean mask for whether each element in a list li of 

integers is even (True) or odd (False) (Condition)
5. Flatten a nested list li, i.e., combine the elements of the nested 

list li (which are themselves lists) into a large list (Nested)



Exercises: List Comprehension (Basic)

(Basic) Create a new list that equals element-wise sum of two lists 
li1 and li2 of the same length 

new_li= [li1[j]+li2[j] for j in range(len(li1))]



Exercises: List Comprehension (Filter)

(Filter) Create a new list that consists of integer elements from an 
existing list li 

new_li= [x for x in li if type(x)==int]



Exercises: List Comprehension (Function)

(Function) Turn a list li of integers into 5-digit zip codes of string 
type with 0s in the beginning to fill space (hint: use f-string :05) 

new_li= [f'{x:05}' for x in li]



Exercise: List Comprehension (Condition)

(Condition) Create a Boolean mask for whether each element in a 
list li of integers is even (True) or odd (False)

new_li= [True if x%2==0 else False for x in li]



Exercises: List Comprehension (Nested)

(Nested) Flatten a nested list li, i.e., combine the elements of the 
nested list li (which are themselves lists) into a large list

new_li= [x for sublist in li for x in sublist]



Mapping: Element-Wise Transformation

• Similar to list comprehension, mapping is another common 
way to apply element-wise transformation to an iterable

• Basic syntax: map(function,iterable)

• Example: Turn all elements in a list li into strings
• list(map(str,li))



Mapping: Element-Wise Transformation

• Similar to list comprehension, mapping is another common 
way to apply element-wise transformation to an iterable

• Basic syntax: map(function,iterable1,iterable2)

• Example: adding numeric elements of two equal-length lists
• list(map(lambda a,b: a+b, [1,2,3], [-1,-2,-3]))



Exercises: Mapping

(Mapping) Create a Boolean mask for whether each element in a list 
li is greater than 5



Exercises: Mapping

(Mapping) Create a Boolean mask for whether each element in a list 
li is greater than 5

list(map(lambda x: True if x>5 else False, li))



Dictionary Comprehension

• Very similar to list comprehension, generates a new dictionary by 
applying key and value expressions to each element of an existing 
iterable

• Syntax: {key_expr:value_expr for x in itrb if cond}
 → The “if cond” part is optional



Exercises: Dictionary Comprehension

1. Create a dictionary that maps each element in the list li into 1 
plus that element (Basic)

2. Create a dictionary that maps only integer item in an existing list 
li into 1 plus that element (Filter)

3. Create a dictionary that maps unique values of the list li to 
their number of occurrences (hint: use set()) (Function)

4. Create a dictionary that maps each item in a list li to a Boolean 
mask for whether it is integer (True) or not (False) (Condition)

5. Create a dictionary using the list of keys and the list of values 
corresponding to each key (hint: use zip()) (Zipping)



Exercise: Dict Comprehension (Basic)

(Basic) Create a dictionary that maps each element in the list li 
into 1 plus that element 

new_dict= {x:x+1 for x in li}



Exercise: Dict Comprehension (Filter)

(Filter) Create a dictionary that maps only integer item in an existing 
list li into 1 plus that element

new_dict= {x:x+1 for x in li if type(x)==int}



Exercises: Dict Comprehension (Function)

(Function) Create a dictionary that maps unique values of the list li 
to their number of occurrences (hint: use set())

new_dict= {x:li.count(x) for x in set(li)}



Exercise: Dict Comprehension (Condition)

(Condition) Create a dictionary that maps each item in a list li to a 
Boolean mask for whether it is integer (True) or not (False) 

new_dict= {x:type(x)==int for x in li}



Exercise: Dict Comprehension (Zipping)

• (Zipping) Create a dictionary using the list of keys and the list of 
values corresponding to each key (hint: use zip()) 

new_dict = dict(zip(keys,values))

new_dict = {keys[i]:values[i] for i in range(len(keys))}

instead of


