
12/26/25 1

Python: Dictionaries
1405 Instructor: Ruiqing (Sam) Cao

Collection Types: Dictionary (dict)

• A dictionary stores data as an unordered, mutable
collection of key-value pairs

ØThink: a finite space hotel with rooms referenced by unique
names like “Torsten” or “A750” → That’s what a dictionary is !

E.g., {'ID':10,'name':'Alice','isFemale':True} is a dictionary
 → A dict type enclosed by braces {} and key-value pairs linked by colon :

Collection Types: Dictionary (dict)

Properties of keys and values
• Keys can be strings, numbers, or tuples (but not lists)
• Keys must be unique
• Values can be of any data type

Dictionaries are unordered
• The keys are not in any specific order, and values are called by

referencing the key that points to that value

Create a Dictionary

• Creating an empty dictionary: di={} or di=dict()

• Creating a dictionary with items: di={'a':0,'b':1}

Access & Update a Dictionary

First, create a dictionary and store it: di={'a':0,'b':1}
• Access a value in a dictionary by referencing its key (must exist)

• di['a'] → 0 di['b'] → 1
• Think: find people in a hotel room by referencing the room name

• Update a value referenced by an existing key
di['b']=-1

 → Don’t use the term “index” which is for ordered sequence only; The
equivalent of an “index” in a dictionary is a key

Add an Item to a Dictionary

First, create a dictionary and store it: di={'a':0,'b':1}
• Add a new key-value pair to the dictionary simply by typing

• di[new_key]=new_value

ØIf new_key does not exist among keys of the dictionary di, the
statement above adds an item new_key:new_value to di

ØIf new_key already exists as a key, the statement above simply
updates the value referenced by new_key into new_value

Get Keys, Values, Items, & Length
• Get all keys of a dictionary as a list

list(di.keys())
• Get all values of a dictionary as a list

• list(di.values())
• Get all items (key-value pairs) of a dictionary as a list (returns a list

of key-value pairs as tuples)
• list(di.items())

• Get number of items (key-value pairs) in a dictionary
len(di)

Check for Dictionary Membership

• Check whether an object is a key of the dictionary

• Check whether an object is a value of the dictionary

• Check whether a key-value pair is an item of the dictionary

ØReturn Boolean type True or False

key in di key in di.keys()or

value in di.values()

(key, value) in di.items()

Iterate Through a Dictionary

• Iterate through all keys of a dictionary

• Iterate through all values of a dictionary

• Iterate through all key-value pairs of a dictionary

for key in di:
 ...

for value in di.values():
 ...

for key, value in di.items():
 ...

for key in di.keys():
 ...

or

Exercises: Dictionaries

Write a Python program to:
1. Ask the user to input a paragraph.
2. Convert the paragraph to all lowercase.
3. Replace all non-alphabetical characters (not a-z) by whitespace

[hint: st.isalpha()].
4. Split the paragraph into words.
5. Creates a dictionary that counts word frequencies.
6. Prints the contents of the dictionary as a list of tuples, in

descending order of word frequencies.

Combine Dictionaries

• You can use the method update() to add all items in di2 to di1
(note: method directly modifies di1 without returning an object)

di1.update(di2)

• Return the combined dictionary as an object without modifying
the original dictionaries

Øbothdi = di1 | di2 (Requires Python version 3.9+)
Øbothdi = {**di1, **di2} (Requires Python version 3.5+)

• You can use a dictionary to store one row of a tabular data set with
variable names

For instance, examine this dictionary
• {'gvkey':33175,'name':'SPOTIFY','year':2019,'sale_bn':7.0}
It contains the same information as a row in the table below (note
that dictionary key → variable name and value → variable value

→ Very similar to the structure of a JSON string, which are extremely
widely used for storing semi-structured data (more on this later)

Use Case: Dictionaries & Tabular Data

gvkey (int) name (str) year (int) sale_bn (float)
33175 SPOTIFY 2019 7.0

Review of Basics: Python Data Structures

