
12/26/25 1

Python: Strings
1405 Instructor: Ruiqing (Sam) Cao

Sequence Types: String (str)

• Enclosing in either double ("") or single ('') quote "Hello
world!" and 'Hello world!' completely equivalent

• Almost anything you type on the keyboard can be part of a str:
letters (A-z,å,ñ,…), digits, special characters, white space

• Python does not have a Character type in contrast to C or
Java; a character are simply stored as a str type of length 1

String Comparison

• String comparisons follow lexicographic order

• This means st1 < st2 if st1 appears before st2 in the dictionary
using the ASCII table (where 0-9 are before A-Z, and A-Z are before
a-z; special characters are more complex, but check ASCII table)

• For example, the following expressions all evaluate to True
'ZZ'<'a'
'111'<'A'

'2024-12-30'<'2025-01-02'

String Creation, Indexing, & Slicing

•Create a string
st="Hello world!" or st='Hello world!'

• String indexing (accessing a character at a position)
st[4] → 'o' (position starts from 0)

• String slicing (extract a substring)
st[6:11] → 'world' (from begin position to end position -1)

In Python, indexes Start at 0 (not 1) !

String Length & Concatenation

• String length (number of characters in it)
len('Hello world!') → 12

•Combine a few strings (using operator “+”)
'Hell'+'o '+'world!' → 'Hello world!’

•Repeat the same string multiple times
3*'dare' → 'daredaredare'

Check for Substring

First, create a string and store it: st = 'Hello world!'
• Substring existence

'world' in st → True

• Substring at the beginning
st.startswith('Hell') → True

• Substring at the end
st.endswith('!') → True

Replace Substrings

• Replace all the substrings that equals the indicated pattern
• 'i tzee tznow'.replace('tz','s') -> 'i see snow'

For instance, remove all the white spaces from a string st
st.replace(' ','')

• Split a string separated by a token into a list
'i see snow'.split(' ')→ ['i','see','','snow']

If no token given, split by white space and ignore empty string
'i see snow'.split()→ ['i','see','snow']

• Join elements in a list into a string (reversal of split)
' '.join(['i','see','','snow']) → 'i see snow'

→ The token can be any string (not necessarily ' ')

String Splitting & Joining

String Trimming

•Remove leading & trailing whitespaces
' hello '.strip() → 'hello'

•Remove specific characters
' hello '.strip(' ho') → 'ell' (remove ' ', 'h', 'o')

•Remove leading characters (to the left) only
' hello '.lstrip(' ho') → 'ello '

•Remove trailing characters (to the right) only
' hello '.rstrip(' ho') → ' hell'

String Lowercasing & Uppercasing

•Convert string to lowercase
'Hello world!'.lower() → 'hello world!'

•Convert string to uppercase
'Hello world!'.upper() → 'HELLO WORLD!'

String Encoding

• Sometimes when you read strings from large files, you need to
encode them (the common choice is 'utf-8', occasionally
'latin-1' if you are dealing with older files or systems)

encoded = st.encode('utf-8')

• Decode back an encoded string
decoded = encoded.decode('utf-8')

String Formatting (f-strings)

• F-strings (formatted string literals) is a very useful way to
include variables and expressions directly within a string
• Requires Python 3.6 or later version

• How it works: prefixed with the letter f or F, "" or '' to
enclose the string, and embeds variables and expression
inside curly braces {} within the string

• Best option for string formatting in Python (better than older
methods): flexible, efficient, and user-friendly

String Formatting (f-strings)

• Embedding variables and expressions
For instance, here are some variables
a=1.1
b=2
C='duMMY'
Let’s see how to use f-strings to embed them and their expressions
f"a is {a}" → 'a is 1.1'
f"a+b equals {a+b}" → 'a+b equals 3.1'
f"lowercase C is {C.lower()}" → 'lowercase C is dummy'

String Formatting (f-strings)
• Printing large numeric values can be ugly – formatting them

appropriately helps (no need to show pi=3.141592653589793 if
only the first two decimal places are necessary 3.14)

Some very common use cases
ØPrint only a few decimal places: pi=3.141592653589793 is float

f"pi equals: {pi:.2f}" → f"pi equals: {pi:.2f}"
ØAdd leading zeros to same length (e.g., region code): jj=680 is int

f"Jonkoping {jj:04}" → 'Jonkoping 0680'
ØPrint the thousand separators: bignum=1000234.5 is float
f"big number is {bignum:,}" → 'big number is 1,000,234.5'

Exercises: Strings
• Write a Python program to:
1) Ask the user to input a

word.
2) Remove leading and

trailing white spaces and
converts the word to all
lowercase.

3) Check if the word is a
palindrome (reads the
same forwards and
backwards).

4) Print True or False.

• Write a Python program to:
1. Input an English sentence (e.g., “Hello

world!” and converts to all lowercase.
2. Replace all non-alphabetic characters

with white spaces. Splits sentence by
white space into a list of strings.

3. Ask the user to input a search term.
4. Check if the term (case insensitive) is in

the list and prints an appropriate message.
5. Create another list containing only words

with more than 5 letters from the list

