Python: Strings

1405 Instructor: Ruiging (Sam) Cao

Sequence Types: String (str)

* Enclosing in either double (" ") or single (' ') quote "Hello
world!" and "Hello world!' completely equivalent

* Almost anything you type on the keyboard can be part of a str:
letters (A-z,a,0,...), digits, special characters, white space

* Python does not have a Character type in contrast to C or
Java; a character are simply stored as a str type of length 1

String Comparison

* String comparisons follow lexicographic order

* This means stl<st2if stl appears before st2 in the dictionary
using the ASCII table (where 0-9 are before A-Z, and A-Z are before
a-z; special characters are more complex, but check ASCII table)

* For example, the following expressions all evaluate to True
"111'<'A°

'2024-12-30"'<'2025-01-02"

String Creation, Indexing, & Slicing

* Create a string

st="Hello world!"f&dst="Hello world!"

* String indexing (accessing a character at a position)
A A > "0’ (position starts from 0)

* String slicing (extract a substring)
AN > 'world' (from begin position to end position -1)

In Python, indexes Start at O (not 1)

Smartest people ranked: 14 ;

W nowr suoom.-
<DONT. SHOOT!
12. You I AM A PHGGHAMMEH

11. Can't
10. Rank

. Them

. Because
. People

. Are

. All

. Smart

. In

. Different
. Ways

0. Programmers

= NWLNONOOO

String Length & Concatenation

* String length (number of characters in it)

len('Hello world!") Wi

e Combine a few strings (using operator “+7)
N CHN R IR o]l e Rl > 'Hello world!’

* Repeat the same string multiple times

> 'daredaredare’

Check for Substring

First, create a string and store it: st = "Hello world!’
* Substring existence

‘world' in stRduilil

* Substring at the beginning

st.startswith('Hell')EREsl=

* Substring at the end
st.endswith('!"') ERIIE

Replace Substrings

* Replace all the substrings that equals the indicated pattern

'i tzee tznow'.replace('tz', 's') EEEI-E11lTA

For instance, remove all the white spaces from a string

st.replace(' ',"'")

String Splitting & Joining

* Split a string separated by a token into a list

'i see snow'.split(' ")t -T- RN o Lo 1" A

If no token given, split by white space and ignhore empty string

YT B T TR ARAA@> ['1', "see’, "snhow']

* Join elements in a list into a string (reversal of split)
SR To b A s [(IR R Y-T-RENRRE Y e IVAD] > ‘1 see show'

> The token can be any string (not necessarily -)
D

String Trimming

* Remove leading & trailing whitespaces

' hello '.strip()Bedi=auKx

* Remove specific characters

AN O S da N o JE M) > ‘ell’ (remove'’,'h' '0")

* Remove leading characters (to the left) only
' hello '.lstrip(' ho')EiE=RNNI .

* Remove trailing characters (to the right) only
' hello '.rstrip(' ho')Ei-INE

String Lowercasing & Uppercasing

* Convert string to lowercase

M ARG IA RN G INIJ@] > 'hello world!"

* Convert string to uppercase

AN]l Ne RNV o]olId@] > 'HELLO WORLD!'

String Encoding

* Sometimes when you read strings from large files, you need to
encode them (the common choiceis 'utf-8"', occasionally
"latin-1" if you are dealing with older files or systems)

encoded = st.encode('utf-8')

* Decode back an encoded string
decoded = encoded.decode('utf-8')

String Formatting (f-strings)

* F-strings (formatted string literals) is a very useful way to
include variables and expressions directly within a string

* Requires Python 3.6 or later version

 How it works: prefixed with the letter forF, "" or ' ' to
enclose the string, and embeds variables and expression
inside curly braces { } within the string

* Best option for string formatting in Python (better than older
methods): flexible, efficient, and user-friendly

String Formatting (f-strings)

* Embedding variables and expressions
For instance, here are some variables

b=2

Let’s see how to use f-strings to embed them and their expressions

MCRCRCIN > ‘2 is 1.1°
R G UEIEER T > 'a+b equals 3.1°
L LIl I I G KRR (G KT @B N > ' lowercase C is dummy’

String Formatting (f-strings)

* Printing large numeric values can be ugly —formatting them
appropriately helps (no need to show pi=3.141592653589793 if
only the first two decimal places are necessary 3.14)

Some very common use cases
»Print only a few decimal places: pi=3.141592653589793 is float
IV EN RS o s s il > F"'pi equals: {pi:.2f}"
»Add leading zeros to same length (e.g., region code) : jj=680is int
Ll G lo RN - AR IR :3 M > ' Jonkoping 0680
»Print the thousand separators: bignum=1000234.5 is float
s o B =S e[V 1 [oT-T G KR Mok ¥=(o V[(BN > 'big number is 1,000,234.5'

Exercises: Strings

* Write a Python program to: * Write a Python program to:

1) Askthe usertoinputa 1. Input an English sentence (e.g., “Hello

word. world!” and converts to all lowercase.
2) Remove leading and 5

trailing white spaces and ‘

converts the word to all

Replace all non-alphabetic characters
with white spaces. Splits sentence by

lowercase. white space into a list of strings.

3) Checkifthewordis a 3. Askthe usertoinput asearchterm.
palindrome (reads the 4. Checkif the term (case insensitive) is in
Egr;ﬂkev\}‘grrc\?/sa)\.rds sie the list and prints an appropriate message.

4) Print True or False. 5. Create another list containing only words

with more than 5 letters from the list

