Python: Functions

& Methods

1405 Instructor: Ruiging (Sam) Cao

Basic Types of Functions

* Built-in functions: These are Python-provided functions that are
globally available without requiring an import

Examples: print()

* Imported functions: These are functions defined in an external
library which you can use after importing the library

Examples: (i lad@®] K PESNI4@)

* User-defined functions: These are functions defined by yourself
to perform certain tasks

HelnflEldefr function name(args):...

Define a Function

* Functions are defined using the def keyword, has a name, a
bodly, (optional) arguments, and [opfional) fetiiin Statemerit

e Functions without a return statement return None

def function name(args): or def function_name(args):

Call a Function

* To call a function, simply reference its name followed by
parentheses enclosing otional sElezlnl=1E1sS passed as arguments

* The VZ1iIzNe]&isl-NiVlaleiile)si equal the returned result from running
the code block in the function’s body

def function_name(args):

return(result)

OIS HIRVERNIE = function name(args=ERENE)

Pass Positional Arguments to a Function

* Positional arguments

def function name(id,name,action):
o id « p@ name « pl action « p2
function value = function_name(p0,pl,p2)

* |f a parameter is passed to the function with no keyword specified

in the n-th position, then it automatically fills the n-th argument in
the definition of the function

Pass Keyword Arguments to a Function

* Keyword arguments

def function name(id,name,action):
o name « pl action « p2 1id « po
function _value = function_name(nhame=pl,action=p2,id=p0)

* |f a parameter is passed to the function with a keyword, then it

automatically fills the argument corresponding to that keyword
regardless of its position in the argument

Default Arguments & Overwriting Them

* Arguments with default parameter values can be _

def function_name(id,name='"',action=None):

. e action « None id « 123 name <« 'abc'
function _value = function _name(id=123,

* When a function is defined, default values can be specified for
some or all arguments (optional)

»The function runs with the default value if no parameter is passed
»|f a parameter is passed for an argument, it overwrites the default value

Exercises: Function Basics

1. Write a function that takes two parameters 11 (list) and tf (bool)

2. The function takes a list of numbersin 11, calculates and
returns the average of its elements if tf is True, calculates and
returns the sum of its elements if tf is False, and returns an
error message if 11 is empty or contains non-numeric elements
(hint: just throw an exception)

3. Callthe function using positional arguments, with parameters
[1,2,3] for 1i and True for tf

4. Callthe function using keyword arguments, with parameters
[1,2,3] for 1i and True for tf

Global vs. Local Variables

* It’s important to distinguish between variables inside a function
(local variable) and variables outside of it (global variable)

* Local variables: declared inside a function and only accessible
within that function

e Global variables: declared outside all functions and accessible
throughout the program, including inside functions

Modify Local Variables Inside Function

Local variables (within a function)

* Either passed as an argument or declared within the function

* Do not exist or retain value outside the function, or once the

program finishes executing the function

Global vs. Local Variables: Arguments

* When a variable is passed as an argument into a function,
It’s considered a local variable within the function, but its
behavior differs depending on data type

»Access an immutable type by copying its entire value

> Immutable types: int, float, str, bool...

»Access a mutable type by pointing to its location in the memory
> Mutable types: 1ist, dict...

Global vs. Local Variables: Naming

When a local variable and a global variable have the
exact same name, the local variable takes precedent

* The code inside the function that refers to that name refers to
the local variable (not the global variable) by default

The best practice is to simply AVOID USING THE SAME
NAMES for global and local variables

Exercises: Local Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def change(i):
i=1+1
return 1

i=0
change(1)
print(i)

def foo(k):
k[o] = 1

q = [0]
foo(q)

print(q)
s]JaNaid Q9] < Can we print k here?

Exercises: Local Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def foo(k):
k[o] = 1

def change(i):
i=1+1
return 1

q = [0]

i=0 foo(q)
change(1) Jeld@HR[0] - anyone?
print(i) i id@ 9] < Can we print k here?
2 - anyone?
1 - anyone?

Exercises: Local Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def change(i): def foo(k):
i=i+1 k[@] = 1

return 1 q = [9]
i=0 foo(q)
change(1) Jeld@HR[0] - anyone?
9] < Can we print k here?

O

1 - anyone?

Exercises: Local Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

ULICUERN def change(i):
is this? Is i+1

it local or return i

def foo(k):

~ What s the
q = [@] relationship
foo(q) between k
print(q)_ andq? |
o]l il Q9] < Can we print k here? No.

global? .
What is 1=0

its value? RUEITLIEN)
print(i)

Which i is this? Is it local or
global? What is its value?

Modify Global Variables Inside Function

Global variables

 Are declared outside all functions

e Can be accessed inside a function

* By default, cannot be modified inside a function

* To modify the global variable var inside a function, declare
“global var”inside that function; Then var changes and
retains value outside the function if the function modifies it

Exercises: Global Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def foo(): y, z =1, 2
return total + 1 def f():
total = © global tt
print(foo()) tt = y+z

()

print(tt)

Exercises: Global Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def foo(): y, z =1, 2

return total + 1 def f():
total = © global tt
print(foo()) tt = y+z

()

Someone says: total print(tt)
should not be accessed
inside f00() ! Someone says: tt should

not exist outside () !

Exercises: Global Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def foo(): y, z =1, 2
return total + 1 def f():
total = © global tt
print(foo()) tt = y+z

()
Someone says: to orint(tt)

should not be acc

inside f00() ! bmeone says: tt should

ot exist outside () !

Exercises: Global Variables (Practice Quiz)

* What are the outputs of these Python code snippets below?

def foo():

return @» + 1

total = ©
print(foo())
Global variable total

can be accessed
inside a function

printftt)

Global variable tt can be
modified inside a function
after it is declared explicitly

Writing Good User-Defined Functions

To avoid errors with user-defined functions, follow these best practices:

 Avoid Variable Name Conflicts: Never use the same name for
different variables, especially when one is global and the otheris local

 Keep Functions Independent: Functions should be self-contained
and reusable across various programs without modifications

* Desigh Arguments and Returns Carefully: Pass required data as

arguments instead of relying on global variables. Always return results
rather than modifying global variables directly

* Treat Global Variables as Constants: Access global variables without
changing them inside a function. If modification is necessary, declare
them explicitly with global [varname] inside the function

Lambda Function

e Lambda functions: these functions do not need to have hames,
and they are one-line functions defined using the 1lambda keyword

User-defined function: Equivalent lambda function:

def some_maths(x,y): some_maths = lambda
return x**2-y some_maths(2,3)
some_maths(2,3)

arguments return value

Lambda Function

e Lambda functions: these functions do not need to have hames,
and they are one-line functions defined using the 1ambda keyword

some_maths = lambda Xx,y: x**2-y
some_maths(2,3)

 Lambda function is useful to data professionals, because it allows
you to write one-line code applying the same function to all rows
in a data table without iterating through it using a for loop

df['new var'] = df['var'].apply(lambda x: x**2-1)

> For instance, the line above generates a new column "'new_var' equalto
x*2-1 for all x in the column 'var' of the Pandas DataFrame named df

Exercises: Lambda Function

1. Write a regular function that takes in a list (or a string) as an
argument, reverses the list (or string), and returns it.

2. Calls the function with a user-provided list (or string) and prints
the reversed list.

3. Write a lambda function that performs the same operation as
the regular function.

4. Create a list of strings, e.g., ['banana’, 'potato’, 'tomato'] and
produce a new list where each elementis a reversed string from
the original list [Hint: use map(function, list)]

Functions & Methods

* You have encountered both functions and methods in this course,
and will continue to see them if you write Python code

> They can be very different despite looking similar, and it is
Important to understand their differences

Definition Reusable block of code A function defined inside a class

Perform an independenttask, Operates on an objectitself and
not tied to any object or class tied to a class and its instances

Usage

Syntax function_name(arguments) obj.method name(arguments)

Functions vs. Methods Comparison

Can perform similar tasks, for instance:

> Sort a list: Function Method
1i new=sorted(1li) li.sort()
»Combine lists: Function Method

func=lambda x,y: x+y ||1lil.extend(1i2)
1i new=func(11,12)

Some methods in NumPy and Pandas have inplace options (but not functions),
e.g., df.dropna() directly modifies df if inplace=True is passed as an
argument, but the same method returns a new object by default inplace=False

Functions & Methods Best Practices

Aim to produce clean, readable, and efficient code

* Functions
* Create functions for repeatedly executed tasks
* Use descriptive names to define functions
* Document the required arguments clearly using comments

* Methods
* Use built-in methods (e.g., 1ist.append(), str.lower())

Modules

Modules

* Modules: self-contained packages containing functions, classes,
and variables that can be imported and re-used

Think: Lego pieces that can be re-used to build different toys

» Built-In modules: provided by Python’s standard library
e.g., math, os, subprocess

> External modules: must be installed from external sources
e.g., request, numpy, pandas

Install External Modules

To import a module, it must already exist in your Python
environment (e.g., the virtual environment for your project)

* Built-in modules do not need to be installed, but external
modules must be installed first

To install an external module, you can do one of the following:

* Run [sfeBERe =R RN leJe[VRR= in command line (PC or Mac)
* Run K Re BB E-NR AN (lele[SRR= in a Jupyter Notebook code block

Import Modules

To use an existing module, you must import it iiijele] gl ileYe [FR¥<
 Call a function func in an imported module: lels[SRY-PRFIId@

Or import func from the module ggleliiilileJeIVNX=RENi(]s]o] oa il ¥¥]¢[e

* Call the imported func directly:

Or import amodule and rename it pjijsle]sauiliiloJe IVNR=IN-T3 (o

* Call func in the imported and renamed module: [{tFREI{4@)

