Python: Lists

1405 Instructor: Ruiging (Sam) Cao

Data Types: Scalar & Non-Scalar
Type |Examples _Descripon

Numbers such as integers (int) or deci==le

0,3.
Numeric 10,3.14,-5 (float) Scalar
: Types

Boolean True,False Logical values, True or False (bool)
String "Hello", 'world’ Text data, enclosed in quotes (str)
List [1,2,3],["a","b"] A sequence of items that can be chang‘ Ordered

~ Asequence of items that cannot be chz Non-Scalar
Tuple (1,2,3),("a","b")

(tuple)

Dictionary {"key":"value"} A collection of key-value pairs (dict) ‘ Unordered
Set {1,2,3},{"a","b"} Anunordered collection of unique itern\ Non-Scalar

Ordered Types: List (1ist)

* Alistis an ordered, mutable collection of elements

»Think: a finite space hotel with N rooms numbered from 0, 1,
2,...., N-1 > That’s whata listis!

More flexible than an array: can hold values of different types

> For example, |BEERIS'ERM] is a valid 1ist

Ordered Types: List (1ist)

* Lists are an extremely useful data structure in Python and has
many powerful applications

»e.g., list comprehension: more advanced but very useful

* Atupleissimilartoa list, butitisimmutable, faster and
expressed in () instead of []

> For example, [l BRI M4D] is a tuple

Create a List

* Creating an empty list: ojdli=1ist()

* Creating a list with elements: IR N IuEwN

In Python, indexes Start at O (not 1)

Smartest people ranked: 14 ;

W nowr suoom.-
<DONT. SHOOT!
12. You I AM A PHGGHAMMEH

11. Can't
10. Rank

. Them

. Because
. People

. Are

. All

. Smart

. In

. Different
. Ways

0. Programmers

= NWLNONOOO

Index, Modify, & Slice a List

* Indexing: access an element in a list by referencing its position
Inside a pair of square brackets: mﬁ and

Think: find people in a hotel room by referencing the room number

» Modify a list at the position referenced, for instance R EE,

* Slicing: access a subsequence by referencing the begin position

€9

and end position (plus 1) separated by “:” inside a pair of square
brackets: IRREBY| (note the end position is 4-1=3 not 4)

Your Turn: List Indexing & Slicing

X[3] ? X[-2] ?

X[:4] ? X[4:] ?

What do these

expressions
evaluate to?

Your Turn: List Indexing & Slicing

X[3] ? X[-2] ?

2 2

X[:4] ? X[4:] ?

['Some', 1, 'data’', 2] ['here'] What do these

expressions
evaluate to?

Generalized Slicing

IR = Ta S e MR W=Toll] returns a slice of the list 11
B The index to begin slicing (inclusive)
: The index where slicing stops (exclusive)

: The step size, which determines the interval between
Indices and the direction of slicing

* Positive step: forward

* Negative step: backward

* Example:|li=[0, 1, 2, 3, 4, 5]

>[1,3]
(5,4, 3]

Your Turn: List Generalized Slicing

X = [1J2J3J4J5]

X[::-1] ? X[1:3:2] ?

X[4:1:-2] ? X[1::3] ?

What do these

expressions
evaluate to?

Your Turn: List Generalized Slicing

X =11,2,3,4,5]

X[::-1] ? X[1:3:2] ?

[5,4,3,2,1] [2]

X[4:1:-2] ? X[1::3] ?

[5,3] [2,5] What do these

expressions
evaluate to?

Append an Element to a List

* Adding an element to the end of a list using the append () method

1i = [1,2,3]

1i.append(4) — 1i becomes [1,2,3,4]

» A mutating method: operates on an object (method) and modifies
It directly (mutating) without returning a value

»append () always adds the element to the end of the list

»0Only one element is added at a time

1li = [1,2,3]
1li.append([4,5])

— 11 becomes [1,2,3,[4,5]]

Sort a List

 Sorting a list using the sort () method or the sorted() function

* The default sort method and function sort elements in ascending
order (from smallest to largest), but you can use the argument
reverse=True for descending order (from largest to smallest)

1li = [2,1,3]
li.sort()

1li = [2,1,3]
li.sort(reverse=True)

— 11 becomes [1,2,3]

— 11 becomes [3,2,1]

sorted([2,1,3]) — returnsnewlist[1,2,3]

sorted([2,1,3],reverse=True) — Returnsnew list [3,2,1]

Check Membership & Count Occurrences

* Check whether an objectis an element of the list

item in 1i

» Returns a Boolean type True or False

* Count the number of times an item appears as element in the list
1i.count(item)
»Returns an int type equal to the occurrences of itemin 11

Your Turn: Append, Sort, Membership

X.append(0) ? [tricky] X.sort() ? [tricky]
X ? X ?

sorted(X) ?

What do these

expressions
evaluate to?

Your Turn: Append, Sort, Membership

X.append(©) ? None X.sort() ? None
X ? [3,4,5,1,2,0] X ? [1,2,3,4,5]
sorted(X) ? [1,2] in X ?

[1,2,3,4,5] False What do these
expressions

evaluate to?

lterate Through a List

* Sometimes you need to automate performing the same operation
on every element of a list

> common approach is to iterate through a list using for loop

for item in 1i:

* More advanced but simple (once learned) and very clean solution
Is to use list comprehension

Your Turn: lterate

s =0 What does this
for num in X: code DO?
S+=num
print(s)
What does this

code PRINT?

Your Turn: lterate

[3,4,5,1,2,0]

Iterate through

s =0 the list X, and add What does this
for num in X: the number in the code DO?
S+=num current jteration

print(s) to variable s

What does this
code PRINT?

15

Combine Lists

* Use the method extend() to add all itemsin1i2 to 1il (note: the
method directly modifies 111 without returning an object)

1lil.extend(1i2)

* Return the combined list as an object without modifying the
original lists

bothli = 1il + 1i2
bothli = [*1il, *1i2]

Your Turn: Combine

Write down AT LEAST TWO different ways
to combine items in these two lists. The
items in Y should appear after those in X.

Your Turn: Combine

X =1[3,4,5] Write down AT LEAST TWO different ways

Y = [1,2,0] to combine items in these two lists. The
items in Y should appear after those in X.

X.extend(Y)

X = X+Y

Use Case: Lists & Tabular Data

e You can use a list to store one row or one column of a tabular data
set without variable names

gvkey (int) -ICRINGEED

33175 SPOTIFY 2019
11217 VOLVO 2019 46.0

For instance, consider the above table
* Represent the first row as a list: [IEEXVAFRRIEXO 1N AW/) VN)
* Represent the second column as a list: |[ISIECIRI 2RI I RV RN

Exercises: Lists

1.

Write a Python program that: Creates a list of 3 integers [1,-1,2].
Adds a new integer 3 to the end of the list. Sorts the list in
descending order. Prints the modified list.

. Write a Python program that: Createsallist1li = [1,2,3].

Makes a slice of 11 usingsli = 1i[0:2]. Change the third
element of sli into 0. Prints the value of the original list 11 (did
it change?) Makes a copy of 1i usingcli = 1i.copy().
Change the second element of cli into 10. Prints the value of
the original list 11 (did it change?) Assigns it to a new list new =
1i. Changes the first element of new into -9. Prints the values of
the original list 11 (did it change?) Explain the results.

Exercises: Lists

1i = new = 11

new refers to the same
object as li, instead of being

L = an (identical) copy of 11
1 2 3
cli = 1li.copy()
cli = "L

cli becomes acopy
1 2 3 of 11, but not the
same objectas 1i

Immutable vs. Mutable Types

A key difference between immutable vs. mutable types is how they
are accessed in the memory

»An immutable object is referenced by its entire value (e.g., scalar)

» A mutable object is referenced by its address (location in the

memory), so assigning it to a new object passes its address to the
new object, but doesn’t pass its content or value m

* Think: accessing an immutable is like being passed an appleé
while referencmg a mutable is like being given the street address
of a house®x (while the house itself and its residents can change)

Immutable vs. Mutable Types

* Immutable types: after an immutable type object is created, its
values cannot be modified (i.e., any operation that modifies the
object in fact creates a new object)

> Not only scalar types, but also str and tuple are immutable
> Immutable types cannot have mutating methods

 Mutable types: after a mutable type object is created, its values
can be modified without changing its identity (i.e., you can add,
remove, and change its elements without creating a new object)

> 11st, dict, set are mutable
> Mutable types can have mutating methods

Exercises: Immutable vs. Mutable Types

1. Write Python code for each of the following data types: numeric
(int or float), tuple, string, 1ist, dictionary, and set.
Creates an object of each type. Assigns it to a new variable.
Modifies the new object by changing its first element (if
possible) or changing the entire object (if first element cannot be
altered). Prints the original object.

2. Which of these types are immutable? Which are mutable?
Explain how immutable and mutable types differ in in terms of
whether the value of the original object changed in the above

exercise.

