
12/26/25 1

Python: Lists
1405 Instructor: Ruiqing (Sam) Cao

Data Types: Scalar & Non-Scalar

Type Examples Description

Numeric 10,3.14,-5
Numbers such as integers (int) or decimals
(float)

Boolean True,False Logical values, True or False (bool)
String "Hello",'world' Text data, enclosed in quotes (str)
List [1,2,3],["a","b"] A sequence of items that can be changed (list)

Tuple (1,2,3),("a","b")
A sequence of items that cannot be changed
(tuple)

Dictionary {"key":"value"} A collection of key-value pairs (dict)
Set {1,2,3},{"a","b"} An unordered collection of unique items (set)

Scalar
Types

Ordered
Non-Scalar

Unordered
Non-Scalar

Ordered Types: List (list)

• A list is an ordered, mutable collection of elements
ØThink: a finite space hotel with N rooms numbered from 0, 1,

2,…, N-1 → That’s what a list is !

More flexible than an array: can hold values of different types
→ For example, ['ab',True,1.0] is a valid list

Ordered Types: List (list)

• Lists are an extremely useful data structure in Python and has
many powerful applications

Øe.g., list comprehension: more advanced but very useful

• A tuple is similar to a list, but it is immutable, faster and
expressed in () instead of []

→ For example, ('ab',True,1.0) is a tuple

Create a List

• Creating an empty list: li=[] or li=list()

• Creating a list with elements: li=[0,1,2]

In Python, indexes Start at 0 (not 1) !

Index, Modify, & Slice a List

• Indexing: access an element in a list by referencing its position
inside a pair of square brackets: li[0] and li[-1]

Think: find people in a hotel room by referencing the room number

ØModify a list at the position referenced, for instance li[0]=5

• Slicing: access a subsequence by referencing the begin position
and end position (plus 1) separated by “:” inside a pair of square
brackets: li[1:4] (note the end position is 4-1=3 not 4)

Your Turn: List Indexing & Slicing

X = ['Some', 1, 'data', 2, 'here']

X[3] ? X[-2] ?

X[:4] ? X[4:] ?
What do these
expressions
evaluate to?

Your Turn: List Indexing & Slicing

X = ['Some', 1, 'data', 2, 'here']

X[3] ?
2

X[-2] ?
2

X[:4] ?
['Some', 1, 'data', 2]

X[4:] ?
['here'] What do these

expressions
evaluate to?

Generalized Slicing

li[start:stop:step] returns a slice of the list li
• start: The index to begin slicing (inclusive)
• stop: The index where slicing stops (exclusive)
• step: The step size, which determines the interval between

indices and the direction of slicing
• Positive step: forward
• Negative step: backward

• Example: li = [0, 1, 2, 3, 4, 5] li[1:4:2] →[1,3]

li[:2:-1] →[5, 4, 3]

Your Turn: List Generalized Slicing

X = [1,2,3,4,5]

X[::-1] ? X[1:3:2] ?

X[4:1:-2] ? X[1::3] ?
What do these
expressions
evaluate to?

Your Turn: List Generalized Slicing

X = [1,2,3,4,5]

X[::-1] ?
[5,4,3,2,1]

X[1:3:2] ?
[2]

X[4:1:-2] ?
[5,3]

X[1::3] ?
[2,5] What do these

expressions
evaluate to?

Append an Element to a List

• Adding an element to the end of a list using the append() method

ØA mutating method: operates on an object (method) and modifies
it directly (mutating) without returning a value

Øappend() always adds the element to the end of the list
ØOnly one element is added at a time

li = [1,2,3]
li.append(4) li becomes [1,2,3,4]

li = [1,2,3]
li.append([4,5]) li becomes [1,2,3,[4,5]]

Sort a List

• Sorting a list using the sort() method or the sorted() function
• The default sort method and function sort elements in ascending

order (from smallest to largest), but you can use the argument
reverse=True for descending order (from largest to smallest)

li = [2,1,3]
li.sort() li becomes [1,2,3]

li = [2,1,3]
li.sort(reverse=True) li becomes [3,2,1]

sorted([2,1,3])

sorted([2,1,3],reverse=True)

returns new list[1,2,3]

Returns new list [3,2,1]

Check Membership & Count Occurrences

• Check whether an object is an element of the list
item in li

ØReturns a Boolean type True or False

• Count the number of times an item appears as element in the list
Øli.count(item)

ØReturns an int type equal to the occurrences of item in li

Your Turn: Append, Sort, Membership

X = [3,4,5,1,2]

X.append(0) ? [tricky]
X ?

X.sort() ? [tricky]
X ?

sorted(X) ? [1,2] in X ? [tricky]
What do these
expressions
evaluate to?

Your Turn: Append, Sort, Membership

X = [3,4,5,1,2]

X.append(0) ? None
X ? [3,4,5,1,2,0]

X.sort() ? None
X ? [1,2,3,4,5]

sorted(X) ?
[1,2,3,4,5]

[1,2] in X ?
False What do these

expressions
evaluate to?

Iterate Through a List

• Sometimes you need to automate performing the same operation
on every element of a list

→ common approach is to iterate through a list using for loop

• More advanced but simple (once learned) and very clean solution
is to use list comprehension

for item in li:
 ...

Your Turn: Iterate

X = [3,4,5,1,2,0]

s = 0
for num in X:
 s+=num
print(s)

What does this
code PRINT?

What does this
code DO?

Your Turn: Iterate

X = [3,4,5,1,2,0]

s = 0
for num in X:
 s+=num
print(s)

What does this
code PRINT?

What does this
code DO?

Iterate through
the list X, and add
the number in the
current iteration
to variable s

15

Combine Lists

• Use the method extend() to add all items in li2 to li1 (note: the
method directly modifies li1 without returning an object)

li1.extend(li2)

• Return the combined list as an object without modifying the
original lists

Øbothli = li1 + li2
Øbothli = [*li1, *li2]

Your Turn: Combine

X = [3,4,5]
Y = [1,2,0]

Write down AT LEAST TWO different ways
to combine items in these two lists. The
items in Y should appear after those in X.

Your Turn: Combine

X = [3,4,5]
Y = [1,2,0]

Write down AT LEAST TWO different ways
to combine items in these two lists. The
items in Y should appear after those in X.

X.extend(Y)

X = X+Y

Use Case: Lists & Tabular Data

• You can use a list to store one row or one column of a tabular data
set without variable names

For instance, consider the above table
• Represent the first row as a list: [33175,'SPOTIFY',2019,7.0]
• Represent the second column as a list: ['SPOTIFY','VOLVO']

gvkey (int) name (str) year (int) sale_bn (float)
33175 SPOTIFY 2019 7.0
11217 VOLVO 2019 46.0

Exercises: Lists
1. Write a Python program that: Creates a list of 3 integers [1,-1,2].

Adds a new integer 3 to the end of the list. Sorts the list in
descending order. Prints the modified list.

2. Write a Python program that: Creates a list li = [1,2,3].
Makes a slice of li using sli = li[0:2]. Change the third
element of sli into 0. Prints the value of the original list li (did
it change?) Makes a copy of li using cli = li.copy().
Change the second element of cli into 10. Prints the value of
the original list li (did it change?) Assigns it to a new list new =
li. Changes the first element of new into -9. Prints the values of
the original list li (did it change?) Explain the results.

Exercises: Lists

1 2 3

1 2 3

li = new = li

new refers to the same
object as li, instead of being
an (identical) copy of linew =

cli = li.copy()

cli becomes a copy
of li, but not the
same object as li

1 2 3
cli =

Immutable vs. Mutable Types

A key di[erence between immutable vs. mutable types is how they
are accessed in the memory
ØAn immutable object is referenced by its entire value (e.g., scalar)
ØA mutable object is referenced by its address (location in the

memory), so assigning it to a new object passes its address to the
new object, but doesn’t pass its content or value

• Think: accessing an immutable is like being passed an apple🍏,
while referencing a mutable is like being given the street address
of a house🏘 (while the house itself and its residents can change)

e.g., lists

Immutable vs. Mutable Types
• Immutable types: after an immutable type object is created, its

values cannot be modified (i.e., any operation that modifies the
object in fact creates a new object)

 → Not only scalar types, but also str and tuple are immutable
 → Immutable types cannot have mutating methods

• Mutable types: after a mutable type object is created, its values
can be modified without changing its identity (i.e., you can add,
remove, and change its elements without creating a new object)

 → list, dict, set are mutable
 → Mutable types can have mutating methods

Exercises: Immutable vs. Mutable Types

1. Write Python code for each of the following data types: numeric
(int or float), tuple, string, list, dictionary, and set.
Creates an object of each type. Assigns it to a new variable.
Modifies the new object by changing its first element (if
possible) or changing the entire object (if first element cannot be
altered). Prints the original object.

2. Which of these types are immutable? Which are mutable?
Explain how immutable and mutable types differ in in terms of
whether the value of the original object changed in the above
exercise.

