
1/22/26 1

Python: Control Flow
1405 Instructor: Ruiqing (Sam) Cao

Conditionals: if(-else) Statements

if (CONDITION_IS_TRUE):
 STATEMENT_IF
else:
 STATEMENT_ELSE

The else statement is optional

Conditionals: if(-else) Statements

Binary Tree Illustration

True False

CONDITION

STATEMENT_IF STATEMENT_ELSE

if (CONDITION_IS_TRUE):
 STATEMENT_IF
else:
 STATEMENT_ELSE

if-elif(-else) Statements

if (CONDITION1_IS_TRUE):
 STATEMENT_IF
elif (CONDITION2_IS_TRUE):
 STATEMENT_ELIF
else:
 STATEMENT_ELSE

The else statement is optional

if-elif(-else) Statements

Binary Tree Illustration

True False

CONDITION1

STATEMENT_IF

STATEMENT_ELIF STATEMENT_ELSE

CONDITION2

True False

The else statement is optional

if (CONDITION1_IS_TRUE):
 STATEMENT_IF
elif (CONDITION2_IS_TRUE):
 STATEMENT_ELIF
else:
 STATEMENT_ELSE

Nested if-then(-else) Statements

if (CONDITION_IS_TRUE):
if (NESTED_COND_IS_TRUE):

 STATEMENT_N1
else:

 STATEMENT_N2
else:
 STATEMENT_N3

Nested if-then(-else) Statements

Binary Tree Illustration

True False

CONDITION

NESTED_COND

STATEMENT_N1 STATEMENT_N2

STATEMENT_N3

True False

if (CONDITION_IS_TRUE):
if (NESTED_COND_IS_TRUE):

 STATEMENT_N1
else:

 STATEMENT_N2
else:
 STATEMENT_N3

Indentation is very important
• Indentation provides a visual structure that reflects the semantic

structure of the program, and each indented set of expressions
denotes a block of instructions

• For instance, the code blocks below have completely different
meanings: the else clause is aligned with different if clauses

if (CONDITION_IS_TRUE):

if (NESTED_COND_IS_TRUE):

 STATEMENT_N1
else:

 STATEMENT_ELSE

if (CONDITION_IS_TRUE):

if (NESTED_COND_IS_TRUE):

 STATEMENT_N1
else:

 STATEMENT_ELSE

Exception Handling
• Corner cases that stop the entire program. You want to avoid this

by anticipating all possible conditions before running into them.
But sometimes that can make your code unnecessarily verbose
• For example, you wrote a program that inputs two numbers and

outputs their sum. But what if something goes wrong, e.g., inputs
are not numbers, or the program didn’t receive an input?
n1 = input("first number: ")
n2 = input("second number: ")
try:
 print(float(n1)+float(n2))
except:
 print("Error")

try:
 ... # main program
except:
 ... # print error message

Basic syntax of exception handling to ensure
program doesn’t stop when it runs into an
unexpected error:

Exercise: Input & Conditionals
Rain or No Rain? Write a Python program to perform these tasks:
• Ask the user to input whether the weather forecast predicts rain today
• Hint: Use a bool type variable to store the user's input
• Acceptable inputs should include answers like "yes", "no", or similar

• Print a recommendation based on the user's input about whether to
bring an umbrella when going out
• Hint: Use a string type to generate the recommendation message

• Handle cases where the user does not provide relevant information
about today's weather
• In such cases, the program should give a default message advising

caution or requesting clearer input

Loops: for & while

• Loops execute a code block
repeatedly, for a specific number
of times (for loop) or while a
condition is true (while loop)

• The for loop iterates over
elements of a sequence, such as
a list or a string
• The while loop repeats itself

until a condition is no longer true

for Loop
for variable in sequence:
 ...

firms = ['JPM','Visa','KKR']
for firm in firms:
 print(firm)

Iterate over a list:

Iterate over a range:
for i in range(10):
 print(i)

while Loop
while condition:
 ...

n = 0
while n<10:
 print(n)
 n += 1

password = ""
while password != "1405":
 password = input("Code:")
 print("Access granted!")

💡What is the output from running each of the code blocks above ?

for Loop
for variable in sequence:
 ...

firms = ['JPM','Visa','KKR']
for firm in firms:
 print(firm)

Iterate over a list:

Iterate over a range:
for i in range(10):
 print(i)

while Loop
while condition:
 ...

n = 0
while n<10:
 print(n)
 n += 1

password = ""
while password != "1405":
 password = input("Code:")
 print("Access granted!")

💡What is the output from running each of the code blocks above ?

0 to 9

0 to 9

Loop Control: break & continue

• The break statement halts and exits the current loop (but not the
program or outer loops if any): useful for debugging – examine
intermediate outputs in the middle of running the program

• The continue statement skips the rest of the current iteration and
moves directly to the next iteration

• Often combined with if statement: exit the current loop (break)
or skip current iteration (continue) when some condition is met

break statement continue statement

i=0
while i<5:
 i += 1
 if i==3:
 continue
 print(i)

i=0
while i<10:
 if i==3:
 break
 print(i)
 i += 1

for i in range(10):
 if i==3:
 break
 print(i)

for i in range(5):
 if i==3:
 continue
 print(i)

💡What is the output from running each of the code blocks above ?

break statement continue statement

i=0
while i<5:
 i += 1
 if i==3:
 continue
 print(i)

i=0
while i<10:
 if i==3:
 break
 print(i)
 i += 1

for i in range(10):
 if i==3:
 break
 print(i)

for i in range(5):
 if i==3:
 continue
 print(i)

💡What is the output from running each of the code blocks above ?

0
1
2

1
2
4
5

0
1
2

0
1
2
4

Exercise: Loop Control

1.

• What does the code above do?
• What is the final output?

s = 0
for i in range(10):
 if (i % 2 == 1):
 s += i**2
 elif i >= 5:
 break
print(s)

2.

• What does the code above do?
• What is the final output?

j = 0
while j < 10:
 j += 1
 if j >= 5:
 continue
 print(j)
print(j)

3. Write a program to calculate and print the total sum of all integers
from 0 to 20. Complete this task using (1) a for loop (2) a while loop

