Python: Control Flow

1405 Instructor: Ruiging (Sam) Cao

Conditionals: if(-else) Statements

if (CONDITION IS TRUE):
STATEMENT IF

else: <+—The else statement is optional
STATEMENT ELSE

Start
I
V

Evaluate condition

|——> [True]l ———> Run the "if" block

|-——> [False] ——> Run the "else" block
I
V

End

Conditionals: if(-else) Statements

if (CONDITION_IS_TRUE): Binary Tree Illustration

STATEMENT_IF

else:
STATEMENT ELSE

True False

STATEMENT IF STATEMENT _ELSE

if-elif(-else) Statements

if (CONDITION1 IS TRUE):
STATEMENT IF

elif (CONDITION2 IS TRUE):
STATEMENT ELIF

Start

else: v
Evaluate conditionl
STATEMENT ELSE |-—> [True] ———> Run the "if" block
— |
| ——> [False]l ——> Evaluate condition2
1 | ———> [True] ——> Run the "elif" block

. . |
The else statement is optional

|——> [False] ——> Run the "else" block

if-elif(-else) Statements

if (CONDITION1_IS_TRUE): Binary Tree Illustration

STATEMENT_IF

elif (CONDITION2 IS TRUE):
T F
STATEMENT ELIF) N

else: STATEMENT IF CONDITION2

STATEMENT ELSE {7/” \\\
— Tru False

The else statement is optional

Nested if-then(-else) Statements

if (CONDITION IS TRUE):
if (NESTED COND IS TRUE):
STATEMENT N1

else: start
S TAT E M E N T_N 2 \E/valuate conditionl

| ———> [True] ———> Execute statements in "if" block

else: | ;
STATEMENT N3

Evaluate condition2

|-——> [True] ———> Run the nested "if" block

|-—> [False] ——> Run the nested "else" block

———> [False] -—> Run the "else" block

|
|
|
|
|
|
|
|
Vv
End

Nested if-then(-else) Statements

if (CONDITION_IS_TRUE): Binary Tree Illustration
if (NESTED_COND_IS TRUE):

STATEMENT N1
ue se
else:

STATEMENT _N2 | NESTED_COND |

STATEMENT _N3

else:
True False
STATEMENT_N3 / \

STATEMENT_N1 STATEMENT_N2

Indentation is very important

* Indentation provides a visual structure that reflects the semantic
structure of the program, and each indented set of expressions
denotes a block of instructions

* Forinstance, the code blocks below have completely different
meanings: the else clause is aligned with different 1f clauses

if (CONDITION_ IS TRUE): if (CONDITION_ IS TRUE):
if (NESTED COND IS TRUE): if (NESTED COND_IS TRUE):
STATEMENT N1 STATEMENT N1
else: else:
STATEMENT ELSE STATEMENT ELSE

Exception Handling

* Corner cases that stop the entire program. You want to avoid this
by anticipating all possible conditions before running into them.
But sometimes that can make your code unnecessarily verbose

* For example, you wrote a program that inputs two numbers and
outputs their sum. But what if something goes wrong, e.g., inputs
are not numbers, or the program didn’t receive an input?

nl =
n2 =
try:

exce

input("first number: ")
input("second number: ")

print(float(nl)+float(n2))
pt:
print("Error")

Basic syntax of exception handling to ensure
program doesn’t stop when it runs into an
unexpected error:

try:

. # main program

except:
. # print error message

Exercise: Input & Conditionals

Rain or No Rain? Write a Python program to perform these tasks:

* Ask the user to input whether the weather forecast predicts rain today
* Hint: Use a bool type variable to store the user's input

* Acceptable inputs should include answers like "yes", "no", or similar

* Print arecommendation based on the user's input about whether to
bring an umbrella when going out
* Hint: Use a string type to generate the recommendation message

* Handle cases where the user does not provide relevant information
about today's weather

* In such cases, the program should give a default message advising
caution or requesting clearer input

Loops: for & while

* Loops execute a code block Sltart

repeatedly, for a specific number

Initialize loop variables

of times (for loop) or while a |
condition is true (while loop) :

Evaluate loop condition
| -——> [True] ——> Run statements in loop body
| |
V
Update loop variables

|
vV

Go back to evaluate loop condition

* The for loop iterates over
elements of a sequence, such as
alistorastring

—> [False] ——> Exit loop

* The while loop repeats itself
until a condition is no longer true

|
|
|
|
|
|
|
|
V
End

for Loop while Loop

for variable in sequence: while condition:

Iterate over a list: n =0

firms = ['JPM','Visa', 'KKkR']| |while n<ile:

for firm in firms: print(n)
print(firm) n +=1

| . password = ""

terate over a range: while password != "1405":

for i in range(10): password = input("Code:")
print(i) print("Access granted!")

® What is the output from running each of the code blocks above ?

for Loop while Loop

for variable in sequence: while condition:

Iterate over a list: n =0

firms = ['JPM','Visa','KKkR']| |while n<ile: 0103

for firm in firms: print(n)
print(firm) n += 1

terat . password = ""

SRS OUEr = Bl while password != "1405":

for i in range(10): 0to 5 password = input("Code:")

print(i) print("Access granted!")

® What is the output from running each of the code blocks above ?

Loop Control: break & continue

* The break statement halts and exits the current loop (but not the
program or outer loops if any): useful for debugging — examine
Intermediate outputs in the middle of running the program

 The continue statement skips the rest of the current iteration and
moves directly to the next iteration

e Often combined with 1f statement: exit the current loop (break)
or skip current iteration (continue) when some condition is met

break statement continue statement

i=0 i=0
while i<10: while 1i<5:
if i==3: i+=1
break if i==3:
print(i) continue
i+=1 print(i)
for i1 in range(10): for i in range(5):
if i==3: if i==3:
break continue
print(i) print(i)

® What is the output from running each of the code blocks above ?

break statement continue statement

i=0 i=0
while i<1@: 0 while i<5: B
if i==3: 1 i+= 1 2
break P if i==3: 4
print(i) continue 5
i+=1 print(i)
for i1 in range(10): for i in range(5): 0
if i==3: o if i==3: 1
break 1 continue 2
print(i) 2 print(i) 4

® What is the output from running each of the code blocks above ?

Exercise: Loop Control

for i in range(10): while j < 1@:
if (1 % 2 1): jo+=1
S += 1**2 if j >= 5:
elif i >= 5: continue
break print(j)
print(s) print(j)
* What does the code above do? * What does the code above do?

* What is the final output? * What is the final output?

3. Write a program to calculate and print the total sum of all integers
from 0 to 20. Complete this task using (1) a for loop (2) awhile loop

