
1/19/26 1

Computer Basics
1405 Instructor: Ruiqing (Sam) Cao

Python: #1-2 Among Global Developers

Source: GitHub Octoverse

Python Job Categories

Career Path Level 1: Beginner Level 2: Intermediate Level 3: Advanced
Python
Developer

• Basic syntax
• Simple data
structures

• Object-oriented
programming
• APIs

• Advanced data
structures
• Multithreading

Data
Analyst

• Data manipulation
with Pandas
• Matplotlib

• Data cleaning
techniques
• Seaborn

• Statistical analysis
with SciPy
• Time series

Software
Architect

• System design
basics

• Component
integration
• Middleware
understanding

• System security
and database
management

Source (Coursera): https://www.coursera.org/resources/job-leveling-matrix-for-python-career-pathways

Learning Python: Not Just the Language

Computational Thinking + GenAI
+ Verify and Modify Output

Python is a tool – just like GenAI
is a tool – that complements
humans’ capability to think
computationally (and creatively)

Computational Thinking + Python

Computer Basics: Storage

Storage

computer memory, data
storage, bits & bytes, RAM,

hard disk drive, etc.

Compute

Central processing unit
(CPU), graphics processing

unit (GPU), clock speed,
programming languages, etc.

→ Enable computers to
perform computation and
automate tasks at scale

Access and
retain data

Process data
and execute
instructions

Memory & Data Storage

• In the computer, a variety of data objects – numbers (integer and
real), characters (and strings), and more complex objects – are
encoded as a series of binary digits called bits

• Computer stores information in bytes: 1 byte = 8 bits

• Storage units in computer devices: 1KB=1000 bytes, 1MB=1000KB,
1GB=1000MB, 1TB=1000 GB (for technical measurement, binary
base is used for the conversion 210=1024 instead of 1000)

Binary: two states of
a switch (1-on 0-off)

Memory & Data Storage

Memory: Storage systems that hold data and program instructions,
and provide access to them for the processor to execute tasks

ØRandom-access memory (RAM) and Cache memory
 → Temporary: short-term, fast, and small

ØPermanent Storage: e.g., hard disk drives, USB drives
 → Persistent: long-term, slow, and large

Computer Basics: Compute

Storage

computer memory, data
storage, bits & bytes, RAM,

hard disk drive, etc.

Compute

Central processing unit
(CPU), graphics processing

unit (GPU), clock speed,
programming languages, etc.

→ Enable computers to
perform computation and
automate tasks at scale

Access and
retain data

Process data
and execute
instructions

Programming Languages

• Computer programs: instructions for the computer to perform
tasks and written in a programming language

• High-level language: Python (also C, C++, Java, FORTRAN, C#, etc.)
 → Close enough to English and relatively easy to learn and write

• As a result of GPT & agentic AI, we now have “Natural language
(e.g., English) as a programming language”

Programming Languages

Hardware

Machine Language

Low-Level (Assembly) Language

High-Level Language (e.g., Python)

“English as a programming language” (GenAI)

Programming Languages

Hardware

Machine Language

Low-Level (Assembly) Language

High-Level Language (e.g., Python)

Driven by more powerful
and cheaper compute

“English as a programming language” (GenAI)

Programming Languages

Machine
Friendly

Human
Friendly

Machine
Language

Assembly
Language

High-Level Language
(e.g,. Python)

Natural Language
(via AI agent)

Source Code & Interpreter vs. Compiler
• Source Code: computer program written in a high-level language

(e.g., Python)

• Computer does not understand source code, and it needs an
interpreter or a compiler to translate the source code into
machine language to execute the program

• An interpreter reads an argument and executes it right away; a
compiler translates the entire source code, then executes the
“compiled” machine-code file at once

Where to Write & Run a Python Program
We use an Integrated Development Environment (IDE) to run Python
• Jupyter Notebook: Runs Python code using the IPython kernel as the

backend Python interpreter
• Visual Studio Code (VS Code): Calls the external system-installed

Python interpreter

Recommendation: choose what works for you and dare to experiment
ØJupyter Notebook is a safe choice for beginners, but VS Code is better

for more serious projects and production-grade code
ØJupyter Notebook is more interactive and user-friendly, but VS Code

has version control integration (GitHub) and now free AI with Copilot

Virtual Environment (venv)

Virtual environment: A separate environment with its own Python
installation and packages to run a project in a clean, isolated setup

Core Python

Project “Viz”
- matplotlib==3.8.0
- pandas==2.1.1
- numpy==1.26.0
- plotly==5.16.1

Project “ML”
- scikit-learn==1.3.1
- numpy==1.26.0
- pandas==2.1.1

Project “Deep”
- tensorflow==2.14.0
- keras==2.14.0
- numpy==1.26.0
- pandas==2.1.1
- scipy==1.11.3

package version

Virtual
environments

Virtual Environment (venv)

Advantages of Using Virtual Environments for Projects

• Avoid Dependency Conflicts: Prevent issues caused by
incompatible package versions or changes in one project affecting
others

• Simplify Collaboration: Use a requirements.txt file to list and
share necessary packages, making it easier for others to
reproduce your results

Exercise: Choose an IDE to open

Jupyter Notebook
PC or MacBook:
• Open command line or

terminal and type “Jupyter
Notebook”, then press Enter
• The Jupyter Notebook

interface will open in your
web browser automatically
• If it doesn’t open, copy the

URL shown in the terminal
(e.g., http://localhost:8888)
and paste it into your browser

Visual Studio Code
MacBook:
• Open Visual Studio Code from

Applications or press
Command + Space, type
"Visual Studio Code," and
select it from Spotlight Search

PC:
• Search for "Visual Studio

Code" in the Start menu or
double-click the desktop
shortcut to open it.

http://localhost:8888/

Exercise: Anatomy of a Code Snippet

• Open a new file (choose .ipynb) in either Jupyter Notebook or VS Code

• Type the code below, click the Run button “ ”, and review the output
displayed beneath the code

Print "Hello world!" on the screen
st = "Hello world!"
print(st)

Variable & The Value Stored In It

Print "Hello world!" on the screen
st = "Hello world!"
print(st)

• A variable (st) is a named container storing a value that can be
referenced by calling its name

• A value ("Hello world!") is the data stored in a variable and can be
of different types, e.g., number, string, other objects

Variable & Value Stored in it

The same glass
(variable) holds
black coffee (value)

The glass (variable)
holds orange juice
(value)

glass = "orange juice"
print(glass)

The same print(glass)
prints different outputs
because the value stored in
glass has changed !

Output: orange juice

glass = "black coffee"
print(glass)

Output: black coffee

Comments
• The highlighted comment explains what the next few lines of code

aims to do: print "Hello world!" on the screen

• After a pound sign (#), anything on the same line is considered a
comment and will be ignored by the interpreter (hence not run)

Print "Hello world!" on the screen
st = "Hello world!"
print(st)

Operator, Expression, & Statement

Print "Hello world!" on the screen
st = "Hello world!"
print(st)

• An operator is a special symbol that acts on variables and values to
perform a particular operation

• A statement is a sequence of actions to perform a particular task

• An expression is part of a statement and produces a value

Function & Method

• Round brackets () are used to call a function or a method, and
the content inside () are arguments passed to the function or
method

Print "Hello world!" on the screen
st = "Hello world!”
print(st)

