Computer Basics

1405 Instructor: Ruiging (Sam) Cao

Python: #1-2 Among Global Developers

Top 10 programming languages
0

Feb 2023 Aug 2023 Aug 2024 Feb 2025

Source: GitHub Octoverse

Python Job Categories

Python e Basic syntax e Object-oriented e Advanced data
Developer ¢ Simple data programming structures

structures * APIs e Multithreading
Data Data manipulation ® Data cleaning e Statistical analysis
Analyst with Pandas techniques with SciPy

e Matplotlib e Seaborn * Time series
Software e System design e Component e System security
Architect basics integration and database

e Middleware management

understanding

Source (Coursera): https://www.coursera.org/resources/job-leveling-matrix-for-python-career-pathways

Learning Python: Not Just the Language

Python is a tool —just like GenAl
Is a tool —that complements
humans’ capability to think
computationally (and creatively)

Computational Thinking + Python

4

Computational Thinking + GenAl
+ Verify and Modify Output

Computer Basics: Storage

Compute

Process data
and execute
instructions

Access and
retain data

computer memory, data
storage, bits & bytes, RAM,
hard disk drive, etc.

Central processing unit
(CPU), graphics processing

> Enable computers to unit (GPU), clock speed,

. programming languages, etc.
perform computation and
automate tasks at scale

Binary: two states of

Memory & Data Storage

a switch (1-on 0-off)

* In the computer, a variety of data objects - numbers (integer and
real), characters (and strings), and more complex objects — are
encoded as a series of binary digits called bits

* Computer stores information in bytes: 1 byte = 8 bits

* Storage units in computer devices: TKB=1000 bytes, TMB=1000KB,
1GB=1000MB, 1TB=1000 GB (for technical measurement, binary
base is used for the conversion 27°=1024 instead of 1000)

Memory & Data Storage

Memory: Storage systems that hold data and program instructions,
and provide access to them for the processor to execute tasks

»Random-access memory (RAM) and Cache memory
> Temporary: short-term, fast, and small

»Permanent Storage: e.g., hard disk drives, USB drives
> Persistent: long-term, slow, and large

Computer Basics: Compute

Storage

Process data
and execute

Access and
retain data

instructions

computer memory, data
storage, bits & bytes, RAM,
hard disk drive, etc.

Central processing unit
(CPU), graphics processing

> Enable computers to unit(GFY), clock speed,

. programming languages, etc.
perform computation and
automate tasks at scale

Programming Languages

* Computer programs: instructions for the computer to perform
tasks and written in a programming language

* High-level language: Python (also C, C++, Java, FORTRAN, C#, etc.)
> Close enough to English and relatively easy to learn and write

* As a result of GPT & agentic Al, we now have “Natural language
(e.g., English) as a programming language”

Programming Languages

'«" > .7 7 ‘
<17
.1i({i‘[’” >

e

Low-Level (Assembly) Language

=

Machine Language

Hardware

Programming Languages

T Al ’”/;(, 4

Low-Level (Assembly) Language

=

Machine Language

Driven by more powerful
Hardware and cheaper compute

Programming Languages

Machine High-Level Language [Natural Language]
Friendly (e.g,. Python) (via Al agent)

E—

Language | | Language Friendly

{ Machine] [Assembly] Human

Source Code & Interpreter vs. Compiler

* Source Code: computer program written in a high-level language
(e.g., Python)

* Computer does not understand source code, and it needs an
interpreter or a compiler to translate the source code into
machine language to execute the program

* An interpreter reads an argument and executes it right away; a
compiler translates the entire source code, then executes the
“compiled” machine-code file at once

Where to Write & Run a Python Program

We use an Integrated Development Environment (IDE) to run Python

* Jupyter Notebook: Runs Python code using the IPython kernel as the
backend Python interpreter

* Visual Studio Code (VS Code): Calls the external system-installed
Python interpreter

Recommendation: choose what works for you and dare to experiment

» Jupyter Notebook is a safe choice for beginners, but VS Code is better
for more serious projects and production-grade code

> Jupyter Notebook is more interactive and user-friendly, but VS Code
has version control integration (GitHub) and now free Al with Copilot

Virtual Environment (venv)

Virtual environment: A separate environment with its own Python
Installation and packages to run a project in a clean, isolated setup

package

Core Python

version

Project “Viz”

‘- matplotl' b==3.8.0

- pandas=::2.1.1

Virtual
environn

‘- numpy=--1.26.0
- plotly=--5.16.1

Project “ML”

- scikit-learn==1.3.1
- numpy==1.26.0
- pandas==2.1.1

Project “Deep”

- tensorflov==2.14.u

- keras==2.14.0
- numpy ==1.26.0
- pandas-==2.1.1
- scipy==1..1.3

Virtual Environment (venv)

Advantages of Using Virtual Environments for Projects

* Avoid Dependency Conflicts: Prevent issues caused by

Incompatible package versions or changes in one project affecting
others

* Simplify Collaboration: Use a requirements.txt file to list and
share necessary packages, making it easier for others to
reproduce your results

Exercise: Choose

an IDE to open

Jupyter Notebook

PC or MacBook:

* Open command line or
terminal and type “Jupyter
Notebook”, then press Enter

* The Jupyter Notebook
interface will open in your
web browser automatically

* If it doesn’t open, copy the
URL shown in the terminal

(e.g., http://localhost:8888)
and paste it into your browser

Visual Studio Code

MacBook:

* Open Visual Studio Code from
Applications or press
Command + Space, type

"Visual Studio Code," and
select it from Spotlight Search

PC:

e Search for "Visual Studio
Code" in the Start menu or
double-click the desktop
shortcut to openit.

http://localhost:8888/

Exercise: Anatomy of a Code Snippet

* Open a new file (choose .ipynb) in either Jupyter Notebook or VS Code

* Type the code below, click the Run button [>”, and review the output
displayed beneath the code

Print "Hello world!" on the screen
st = "Hello world!™
print(st)

Variable & The Value Stored In It

 Avariable (st) is a named container storing a value that can be
referenced by calling its name

 Avalue ("Hello world!")is the data stored in a variable and can be
of different types, e.g., number, string, other objects

Print "Hello world!" on the screen
st = "Hello world!™
print(st)

Variable & Value Stored in it

glass = "orange juice"
print(glass)

Output: orange juice

glass = "black coffee”
print(glass)

Output: black coffee

The (variable) | |The The same print (glass)

. prints different outputs
holds (Varlable) holds because the value stored in
(value) black coffee (value) | |glass haschanged!

Comments

* The highlighted comment explains what the next few lines of code
aims to do: print "Hello world!" on the screen

* After a pound sign (¥#), anything on the same line is considered a
comment and will be ighored by the interpreter (hence not run)

Print "Hello world!" on the screen
st = "Hello world!™
print(st)

Operator, Expression, & Statement

* An - Is a special symbol that acts on variables and values to
perform a particular operation

* A statement is a sequence of actions to perform a particular task

* An expression is part of a statement and produces a value

Print "Hello world!" on the screen
st B "Hello world!"
print(st)

Function & Method

* Round brackets () are used to call a function or a method, and
the content inside () are arguments passed to the function or
method

Print "Hello world!" on the screen
st = "Hello world!”
print(st)

